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1 Derivation of Boltzmann Distribution

The purpose of this derivation is to show, following Boltzmann, that one can derive a well-known physical law
(the exponential shape of the probability distribution of energy states in an ideal gas) from mere statistical
considerations. One first considers the constraints of the statistical object (the ensemble) in form of constant
values for observable macroscopic quantities and then considers all the possible microscopic arrangements
that support them. Each set of macroscopic constraints (temperature, pressure, volume, energy, number of
particles, etc) defines particular ensembles (microcanonical, canonical, grand canonical, etc).

For instance, the microcanonical ensemble considers all the possible microscopic arrangements that are
supported by the same macroscopic properties: a fixed value for energy E, number of particles N , and
volume V (i.e. the constraints). Via the ergodic axiom, all such possible microscopic arrangements of the
ensemble are considered equiprobable.

Boltzmann’s brilliance led him to consider the number of microstates W ({Nk}) that are supported by
N particles and total energy E that are divided into k = 0, 1, ...,K bins of energy ✏k and then maximize
number W subject to the ensemble constraints

E =
X

k

Nk✏k (1)

N =
X

k

Nk (2)

The kinetic theory of ideal gases envisions an ideal gas as composed of atoms or molecules in random drift
within a volume and partaking in elastic collisions between each other where there is no loss of energy so that
energy levels ✏k can be exchanged. We want to know the distribution of particles W ({Nk}) across 0, ...,K
bins of energy levels ✏

0

, ✏
1

, ..., ✏K , i.e. W ({N
0

, N
1

, ..., NK}). In order to do so, we use the binomial formula
to compute combination, that is, a selection of items from a collection, such that (unlike permutations) the
order of selection does not matter. For a set of n elements, the number of k combinations is:
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The total number of microstates will be the number of combinations of N
0

particles supported by the whole
N particles at energy level ✏

0

, multiplied by the number of N
1

combinations of the remainder particles N�N
0

at energy level ✏
1

, multiplied by the number of N
2

combinations supported by the remainder N �N
0

�N
1

particles at energy level ✏
2

, and so on until we reach maximum energy level ✏K :
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so that consecutive terms at the denominator and numerator can vanish, yielding:

W ({Nk}) = W ({N
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1

, ..., NK}) = N !Q
k Nk!
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Instead of maximizing W ({Nk}), we maximize its logarithm lnW for tractability, on which we can apply
Stirling’s formula for large numbers,

lnN ! ⇠ N lnN �N

Hence,

lnW = ln(N !)�
X

k

ln(Nk!) ⇠ N lnN �N �
X

k

Nk lnNk +
X

k

Nk = N lnN �
X

k

Nk lnNk (5)

We compute now the total di↵erential of d lnW subject to constraints (1) and (2), multiplied by parameters
� and ↵:

dE =
X

k

✏kdNk = 0 (6)

dN =
X

k

dNk = 0 (7)

Knowing that N is a constant and its derivative is zero, the total di↵erential is:
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(8)
which we subject to the constraints introducing two terms that are equal to zero (6) and (7):

0 = d lnW = �
X

k

(↵+ �✏k + lnNk) dNk (9)

For each k component of the sum, the term within parentheses is zero, which yields:

lnNk = �↵� �✏k

Nk = e�↵��✏
k = e�↵e��✏

k

We compute the normalization term e�↵ or partition function with constraint (2),
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The number of particles Nk at energy level ✏k will be:
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k

P
k e

��✏
k

2



Now we can finally obtain the Boltzmann distribution, which gives the probability p(✏k) that a system will
be in a certain state as a function of that state’s energy and the temperature of the system:

p(✏k) =
Nk(✏k)

N
=

e��✏
k

P
k e

��✏
k

(10)

where � = 1

kT , k is Boltzmann’s constant, and T is the temperature of the system.

2 Probability Theory

2.1 Basics

We have two random variables X and Y with corresponding state spaces N and M .
Joint frequencies depend on the values of all (both) variables:

p(xi, yj) = pij � 0; with
NX

i

MX

j

pij = 1 (11)

Marginal frequencies sum frequencies over one variable:

p(xi) =
MX

j

p(xi, yj); p(yj) =
NX

i

p(xi, yj) (12)

Conditional frequencies take one variable as given:

p(xi|yj) =
p(xi, yj)

p(yj)
=

p(xi, yj)PN
i p(xi, yj)

; p(yj |xi) =
p(xi, yj)

p(xi)
=

p(xi, yj)PM
j p(xi, yj)

(13)

The chain rule of probability is:

P (X,Y ) = P (X|Y )P (Y ) = P (Y |X)P (X) (14)

2.2 Example: Two-Way Relative Frequency Table

Boys Girls Totals
Made 7; 21.2% 6; 18.2% 13; 39.4%
Missed 11; 33.3% 9; 27.3% 20; 60.6%
Totals 18; 54.5% 15; 45.5% 33; 100%

The joint probability of a boy missing a shot is P (boy,missed) = 11/33. The conditional probability of
missing the shot given being a boy is the joint probability divided by the marginal probability of being a boy:

P (missed|boy) = P (boy,missed)

P (boy)
=

11/33

18/33
= 11/18

The joint probability of a girl making a shot is P (girl,made) = 6/33. The conditional probability of being
a girl given a shot was made is

P (girl|made) =
P (girl,made)

P (made)
=

6/33

13/33
= 6/13
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2.3 Bayes’ Rule

In the Bayesian (or epistemological) interpretation, probability measures a “degree of belief.” Bayes’ theorem
then links the degree of belief in a proposition before and after accounting for evidence. In the frequentist
interpretation, probability (understood as a frequency) measures a “proportion of outcomes”, where an
experiment is performed many times.

P (A|B) =
P (B|A)P (A)

P (B)
(15)

Prove Bayes’ Rule through the chain rule. P (A|B) is the posterior, P (B|A) is the likelihood, P (A) is the
prior, and P (B) =

P
P (B|A)P (A) works as a normalizing constant and is known as evidence.

2.3.1 Example 1

Using the previous example, the probability of a boy given that the shot was missed is

P (boy|missed) =
P (boy,missed)

P (missed)
=

11/33

20/33
= 11/20

We could have computed this probability from P (missed|boy) with Bayes’ Rule:

P (boy|missed) =
P (missed|boy)P (boy)

P (missed)
=

P (missed|boy)P (boy)

P (missed|boy)P (boy) + P (missed|girl)P (girl)
=

11/18⇥ 18/33

20/33
= 11/20

2.3.2 Example 2

The Bayes Rule is especially relevant in medical diagnosis. For instance, we have a drug test with a 99%
true-positive rate (“sensibility”: i.e. 99% drug users give a true positive) and a 99% true-negative rate
(“specificity”: i.e. 99% non-users give a true negative). We want to know the probability of being a user
given that the test was positive, i.e. P (user|+). We know that 0.5% of the population uses this drug. Hence:

P (user|+) =
P (+|user)P (user)

P (+|user)P (user) + P (+|non� user)P (non� user)

where P (+|user) is the true-positive rate, P (+|non�user) is 1 minus the true-negative rate P (�|non�user),
and the denominator equals P (+).

P (user|+) =
0.99⇥ 0.005

0.99⇥ 0.005 + 0.01⇥ 0.995
⇠ 1

3

Only one third of the positives will be positive! From 1000 people, we know that 5 will be users. From
995 non-users, the true-positive rate is 0.99 so there will be around 10 false positives. From 5 users, the
true-negative rate is 0.99 so all the positives will be true. In total we will have 15 positives, with 2/3 being
false.

The importance of specificity in this example can be seen by calculating that even if sensitivity is raised
to 100% and specificity remains at 99% then the probability of the person being a drug user only rises
from 33.2% to 33.4%, but if the sensitivity is held at 99% and the specificity is increased to 99.5% then the
probability of the person being a drug user rises to about 49.9%.

2.3.3 Example 3: Making inferences about racial disparities in police violence

In PNAS Letters:
A recent PNAS study, Johnson et al., investigates the role of race in fatal police shootings. Unlike previous

studies which focused on victim race alone, the paper features original data about the race of o�cers who
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use deadly force and o↵ers a rare accounting of other shooting attributes that contextualize fatal encounters.
Johnson et al. discuss possible “discrimination by White o�cers”, but conclude racial diversity in police
agencies brings limited benefits–a claim cited by major news outlets and in US Congressional testimony,
inflaming an already contentious policy debate.

Despite the value of this much-needed research, its approach is mathematically incapable of supporting
its central claims. In this letter, we clarify the gap between what Johnson et als study asserts and what it
actually estimates, as well as the implications of that di↵erence for policymaking and future scholarship on
race and policing.

3 Information Theory

The fundamental problem of communication is that of reproducing at one point either exactly
or approximately a message selected at another point. [Shannon, 1948]

Statistical communication theory is generally regarded as having been founded by Shannon in 1948 and
Wiener in 1949, who conceived of the communication situation as one in which a signal chosen from a
specified class is to be transmitted through a channel, but the output of the channel is not determined by
the input. Instead, the channel is described statistically by giving a probability distribution over the set of
all possible outputs for each permissible input. For a review of the concepts of information theory, please
read chapter 1 of Mackay [MacKay and Mac Kay, 2003].

In reality, knowing the specific location and momentum of a small particle like an atom is in fact episte-
mologically and technically impossible (Heisenberg’s uncertainty principle in quantum mechanics). Hence we
should think of atoms as quantum (probability) fields (of position and momentum). In the view of Jaynes
(1957), thermodynamic entropy, as explained by statistical mechanics, should be seen as an application
of Shannon’s information theory: the thermodynamic entropy is interpreted as being proportional to the
amount of further Shannon information needed to define the detailed microscopic state of the system, that
remains uncommunicated by a description solely in terms of the macroscopic variables of classical thermo-
dynamics, with the constant of proportionality being just the Boltzmann constant. Adding heat to a system
increases its thermodynamic entropy because it increases the number of possible microscopic states of the
system that are consistent with the measurable values of its macroscopic variables, making any complete
state description longer.

Figure 1: The relationship between joint information, marginal entropy, conditional entropy and mutual

entropy.

3.1 Self-Information

In information theory, information content, self-information, or surprisal of a random variable or signal is
the amount of information gained when it is sampled. Let X be a random variable with discrete probability
mass function p(xi) over i = 1, ..., N states.
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The self-information or information content of measuring X as outcome xi is defined as:

I(xi) ⌘ � log(p(xi)) = log

✓
1

p(xi)

◆
(16)

The expected value of the information content of X is the entropy H.

3.2 Entropy as Uncertainty: A Measure of Information

Entropy e↵ectively bounds the performance of the strongest lossless compression possible. Hence it defines the
minimum expected length of the message. See also Kolmogorov complexity. In practice, compression
algorithms deliberately include some judicious redundancy in the form of checksums to protect against errors.

H(X) = �
NX

i

pi(X) log pi(X) = h� log p(X)i = hI(X)i (17)

3.3 Units

The units of entropy relate to the base of the logarithm used in the entropy formula, which correspond
directly to the length of the vocabulary (ie the number of states N the random variable can attain in each
observation).

3.3.1 Example 1: Computer Language in Bits

The bit, or binary digit, is the smallest piece of information that can be processed by a computer. In many
systems, such as the American Standard Code for Information Interchange, it can take 8 bits, or 1 byte, to
make one character–a letter, numeral or symbol. A bit is either a 1 or 0, a “yes” or “no,” or an “on” or
“o↵.” The frequency of a signal voltage is measured in cycles per second. One hertz is one complete cycle
per second. While higher frequency can mean a faster system, a truer measurement of communication speed
is bit rate. Hertz Bits Most data communications systems operate at millions of cycles per second, or
megahertz. In high frequencies, such as values in the MHz range, the time the cycle requires is measured in
minute fractions of a second.

3.3.2 Example 2: Protein Transcription from DNA (Genetic Information)

A critical history of technology would show how little any of the inventions of the 18th century
are the work of a single individual. Hitherto there is no such book. Darwin has interested us
in the history of Nature’s Technology, i.e., in the formation of the organs of plants and animals,
which organs serve as instruments of production for sustaining life. Does not the history of the
productive organs of man, of organs that are the material basis of all social organisation, deserve
equal attention? [Marx, 1976]

Important from a complex-systems perspective and historical materialism. Biological evolution is all
about information-processing organic systems.

Genes that provide instructions for proteins are expressed in a two-step process. In transcription, the DNA
sequence of a gene is “rewritten” in RNA. In eukaryotes, the RNA must go through additional processing
steps to become a messenger RNA, or mRNA. In translation, the sequence of nucleotides in the mRNA
is ”translated” into a sequence of amino acids in a polypeptide (protein chain). Cells decode mRNAs by
reading their nucleotides in groups of three, called codons.

• Basic RNA Coding Unit is 3 nucleotides (with 4 possible nucleotides A, C, G, U). Hence we have no
bits but “quadrits” ie 4 possible options in each question.
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• Size of a codon, the transcription unit from RNA to aminoacids (the basic components of proteins): 3
nucleotides. Why is it so?

• Three is the minimum number of nucleotides per codon needed to encode the existing 20 aminoacids.
20 amino acids are encoded by combinations of 4 nucleotides.

• If a codon were two nucleotides, the set of all combinations could encode only 4x4 = 16 amino acids.

• With three nucleotides, the set of all combinations can encode 4x4x4 = 64 amino acids (i.e. 64
di↵erent combinations of four nucleotides taken three at a time), which is greater than the existing 20
aminoacids.

• More Information https://www.khanacademy.org/science/biology/gene-expression-central-dogma/central-
dogma-transcription/a/the-genetic-code-discovery-and-properties

3.4 Uniform Distribution has Maximum Uncertainty

H(p)  logN with equality if and only if all pi = 1/N .

3.5 Joint Uncertainty

Let X and Y be random variables with joint probability function p(xi, yj) over states i 2 N and j 2 M . We
have an experiment with N ⇥M possibles outcomes of probability p(xi, yj). Then the joint uncertainty is:

H(X,Y ) = �
NX

i

MX

j

p(xi, yj) log p(xi, yj) (18)

3.6 Independent Events Have Additive Uncertainty

H(X,Y )  H(X) +H(Y ) (19)

with equality if and only if X and Y are independent.

3.7 Conditional Uncertainty

Let X and Y be two random variables over states N and M . If we are given that X = xi, then the
distribution of Y is characterized by the set of conditional probabilities p(yi|xi). Conditional uncertainty of
Y given that X = xi is:

H(Y |X = xi) = �
MX

j=1

p(yj |xi) log p(yj |xi) (20)

The conditional uncertainty of Y given X is defined as a weighted average of the uncertainties H(Y |X = xi)
(where the weights are p(xi)), yielding:

H(Y |X) = �
NX

i=1

MX

j=1

p(xi, yj)| {z }
joint

log p(yj |xi) = �
NX

i=1

MX

j=1

p(xi, yj) log
p(xi, yj)

p(xi)
= h� log p(Y |X)i (21)

• Conditional entropy equals zero H(Y |X) = 0 if and only if the value Y is completely determined
by the value of X.

• Conditional entropy of independent random variables H(Y |X) = H(Y ) if and only if X and
Y are independent random variables (conversely, H(X|Y ) = H(X).

• Chain Rule H(Y |X) = H(X,Y )�H(X)

7
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• Bayes’ Rule H(Y |X) = H(X|Y )�H(X) +H(Y )

• H(Y |X)  H(Y )

3.8 Kullback-Leibler Divergence (Relative Entropy)

The relative entropy or discrimination information between two proper probability distributions p and q for
random variables X and Y , i.e. the Kullback-Leibler divergence from q to p is:

DKL(p||q) = �
NX

i

pi(x) log
q(xi)

p(xi)
=

NX

i

p(xi)[log p(xi)�log q(xi)] = hlog p(xi)�log q(xi)i = Hq(p)| {z }
cross entropy

�H(p)

(22)

• DKL(p||q) � 0 with equality if pi = qi8k.

• Cross entropy Hq(p) = H(p) + DKL(p||q) =
PN

i p(xi) log
⇣

1

q(x
i

)

⌘
tells us the average length of a

message from one distribution using the optimal coding length of another where � log q(xi) is the
optimal coding length for messages coming from the q distribution while p(xi) is the cost of sending
message xi to p. distribution.

• Joint entropy H(X,Y ) tells us the average cost of sending multiple messages simultaneously. Or
perhaps more intuitively, the average cost of sending a single message that has multiple parts.

The measure captures the informational distance between two probability distributions, but it is not a
true metric (mathematical distance) because it is not symmetric, i.e:

DKL(p||q) 6= D(q||p)

. In other words, it reflects the gain in information in q resulting from the additional information given by
p. In the context of machine learning, DKL(p||q) is often called the information gain achieved if q is used
instead of p.

Expressed in the language of Bayesian inference, D(p||q) is a measure of the information gained when one
revises one’s beliefs from the prior probability distribution q to the posterior probability distribution p. In
other words, it is the amount of information lost when q is used to approximate p. p typically represents the
“true” distribution of data, observations, or a precisely calculated theoretical distribution, while q typically
represents a theory, model, description, or approximation of p. In order to find a distribution q that is closest
to p, we can minimize KL divergence.

A common goal in Bayesian experimental design is to maximize the expected KullbackLeibler divergence
between the prior p(A) and the posterior p(A|B).

3.9 Mutual Information

Information is a reduction in uncertainty. We define the information conveyed about X by Y as:

I(X,Y ) = H(X)�H(X|Y ) =
NX

i

MX

j

p(xi, yj) log
p(xi, yj)

p(xi)q(xj)
= h� log

p(xi)

p(xi|yj)
i = H(Y )�H(Y |X) (23)

The information conveyed about X by Y may also be interpreted as the di↵erence between the minimum
average number of “yes or no” questions required to determine the result of one observation of X before Y
is observed and the minimum average number of such questions required after Y is observed.

Information is symmetric: I(X,Y ) = (Y,X). The information conveyed about X by Y is the same that
the information conveyed about Y by X.
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• H(X,Y ) = H(X|Y ) +H(Y |X) + I(X,Y )

• I(X,Y )  H(X)

Pointwise mutual information (PMI) is a statistical measure of association. It refers to single events,
while MI refers to the average of all possible events:

pmi(x; y) ⌘ log
p(x, y)

p(x)
= log

p(x|y)
p(x)

3.10 Example 1

# Compute Entropies

entropy<-function(f){return(-sum(f*log(f)))}

# Initialization

colors <- c("tomato", "steelblue", "springgreen", "orange", "black")
x<-seq(-6,6,length=100) # Support

plot(NA,xlim=c(min(x),max(x)),ylim=c(0,0.05),xlab='Support x',ylab='Probability p(x)')
grid()

# Distributions with increasing entropy (due to increasing sd)

p1<-dnorm(x,mean=0.5,sd=1) # Gaussian with mean 0.5, sd 1

p1<-p1/sum(p1)
lines(x,p1,col=colors[1],lwd=2)

p2<-dnorm(x,mean=0,sd=1.5)
p2<-p2/sum(p2)
lines(x,p2,col=colors[2],lwd=2)

p3<-dnorm(x,mean=-1,sd=2)
p3<-p3/sum(p3)
lines(x,p3,col=colors[3],lwd=2)

p4<-rep(1/length(x),length(x)) # Uniform Distribution

lines(x,p4,col=colors[4],lwd=2)

# Add Legend

legend('topright',paste('H:',sapply(list(p1,p2,p3,p4),function(x){round(entropy(x),3)})),pch=16,col=colors,bty='n',bg='transparent')
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# Entropy equals the weighted mean (expected value) of the (negative) logarithm

sapply(list(p1,p2,p3,p4),function(x){weighted.mean(log(x),x)})

[1] -3.529152 -3.934106 -4.194332 -4.605170

3.11 Example 2

Check Lab 2 Excel Sheet.

3.12 Example: Kullback-Leibler Divergence

• DKL(Observed||Uniform) = 0.338

• DKL(Observed||Binomial) = 0.477

• DKL(Binomial||Observed) = 0.330 (KL divergence is not a distance)

As we can see the information lost by using the binomial approximation is greater than using the uniform
approximation. If we have to choose one to represent our observations, we’re better o↵ sticking with the
uniform approximation. You can compute yourself the KL divergences using the data from here.

3.13 Central Moments of a Distribution

In the linear constraints case of entropy maximization, the constraints take the form of central moments
of the distribution. If the function represents physical density, then the zeroth moment is the total mass,
the first moment divided by the total mass is the center of mass, and the second moment is the rotational
inertia. If the function is a probability distribution, then the zeroth moment is the total probability (i.e. one),
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Figure 2: Approximating uniform and binomial distributions to an observed distribution: example Here

the first moment is the expected value, the second central moment is the variance, the third standardized
moment is the skewness, and the fourth standardized moment is the kurtosis.

The nth central moment of a random variable X is

µn(X) ⌘ h(X � hXi)ni (24)

3.13.1 Zeroth Moment: Normalization
NX

i

pi = 1 (25)

3.13.2 First Moment: Expected Value

E(X) ⌘ hXi ⌘
NX

i

pixi (26)

3.13.3 Second Moment: Variance

var(X) = h(X � hXi)2i =
NX

i

pi(xi � hXi)2 =

 
NX

i

pix
2

i

!
� hXi2 (27)

If values are equally likely (i.e pi = 1/N),

var(X) =
1

N

NX

i

(xi � hXi)2 (28)

The variance is also typically designated as �2 (it is also the square of the standard deviation). Informally,
it measures how far a set of random numbers are spread out from their average value.

The variance can also be thought of as the covariance of a random variable with itself:

var(X) = cov(X,X) (29)

This expression for the variance is useful:

var(X) = h(X � hXi)2i = hX2i � hXi2 (30)
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3.13.4 Third Moment: Skewness

In probability theory and statistics, skewness is a measure of the asymmetry of the probability distribution
of a real-valued random variable about its mean.

µ̃
3

= h
✓
X � µ

�

◆
3

i (31)

3.13.5 Fourth Moment: Kurtosis

In probability theory and statistics, kurtosis (from Greek: , kyrtos or kurtos, meaning “curved, arching”) is
a measure of the “tailedness” of the probability distribution of a real-valued random variable.

Kurt(X) = h
✓
X � µ

�

◆
4

i = h(X � µ)4i
h(X � µ)2i2 =

µ
4

�4

(32)

4 Types of Distributions

4.1 Uniform

The probability distribution of a continuous uniform distribution between a and b is:

f(x) =
1

b� a
for a  x  b (33)

4.2 Exponential

The exponential distribution is the probability distribution of the time between events in a Poisson process,
i.e., a process in which events occur continuously and independently at a constant average rate �:

f(x) = �e��x for x � 0 (34)

The expected value of the exponential distribution is 1/� and variance is 1/�2. If you receive phone calls at
an average rate of 2 per hour, then you can expect to wait half an hour for every call. Its most characteristic
property is memorylessness.

The exponential probability distribution of wages, predicted by the statistical equilibrium theory of a
labor market developed by Foley in 1996, is supported by empirical data on income distribution in the USA
for the majority (about 97%) of population [Drăgulescu and Yakovenko, 2001]. In addition, the upper tail of
income distribution (about 3% of population) follows a power law and expands dramatically during financial
bubbles, which results in a significant increase of the overall income inequality. A mathematical analysis of
the empirical data clearly demonstrates the two-class structure of a society, as pointed out Karl Marx and
recently highlighted by the Occupy Movement.

4.3 Power Law (Pareto, Zipf)

A power law is a functional relationship between two quantities, where a relative change in one quantity re-
sults in a proportional relative change in the other quantity, independent of the initial size of those quantities:
one quantity varies as a power of another. Its characteristic property is scale invariance.

f(x) = ax�k for x � 0 (35)

A power-law has a well-defined mean only if k > 2, and it has a finite variance only if k > 3; most identified
power laws in nature have exponents such that the mean is well-defined but the variance is not, implying
they are capable of black swan behavior.
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To visualize Zipf’s law, we can take a country (e.g., the United States) and order the cities3 by population
(e.g., New York as first, Los Angeles as second). Drawing a graph, we place the log of the rank on the y axis
(New York has log rank ln1, and Los Angeles has a log rank log 2), and on the x axis, we place the log of the
population of the corresponding city, which is called the size of the city. Figure 3 (following Krugman 1996
and Gabaix 1999a) shows the resulting plot for the 135 American metropolitan areas listed in the Statistical
Abstract of the United States for 1991.

Figure 3: Log size versus log rank of the 135 American metropolitan areas listed in the Statistical Abstract of

the United States for 1991. Figure taken from Gabaix 1999a [Gabaix, 2009]

The distributions of a wide variety of physical, biological, and man-made phenomena approximately
follow a power law over a wide range of magnitudes: these include the sizes of craters on the moon and
of solar flares,the foraging pattern of various species, the sizes of activity patterns of neuronal populations,
the frequencies of words in most languages, frequencies of family names, the species richness in clades of
organisms, the sizes of power outages and earthquakes, criminal charges per convict, volcanic eruptions,
human judgements of stimulus intensity and many other quantities. Few empirical distributions fit a power
law for all their values, but rather follow a power law in the tail.

In physics, self-organized criticality (SOC) is a property of dynamical systems that have a critical point
as an attractor [Bak et al., 1988]. Their macroscopic behavior thus displays the spatial or temporal scale-
invariance characteristic of the critical point of a phase transition, but without the need to tune control
parameters to a precise value, because the system, e↵ectively, tunes itself as it evolves towards criticality.
Its characteristic distribution is in e↵ect a power law.

The Pareto distribution is also a continuous power-law probability distribution that is used in description
of social, scientific, geophysical, actuarial, and many other types of observable phenomena. Originally applied
to describing the distribution of wealth in a society, fitting the trend that a large portion of wealth is held
by a small fraction of the population, the Pareto distribution has colloquially become known and referred to
as the Pareto principle, or “80-20 rule”, and is sometimes called the “Matthew principle”. This rule states
that, for example, 80% of the wealth of a society is held by 20% of its population.

4.4 Normal (Gaussian)

A normal distribution is a type of continuous probability distribution for a real-valued random variable. The
general form of its probability density function is

f(x) =
1p
4⇡�2

e�
(x�µ)2

4�2 (36)
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The parameter µ is the mean or expectation of the distribution (and also its median and mode); � is its
standard deviation and �2 its variance.

Normal distributions are important in statistics and are often used in the natural and social sciences to
represent real-valued random variables whose distributions are not known. Their importance is partly due
to the central limit theorem, which states that, under some conditions, the average of many samples (obser-
vations) of a random variable with finite mean and variance is itself a random variable whose distribution
converges to a normal distribution as the number of samples increases.

4.5 Log-normal (Gibrat)

A log-normal distribution results from the logarithm of a random variable following a Gaussian (normal)
distribution.

Gibrat’s law (sometimes called Gibrat’s rule of proportionate growth or the law of proportionate e↵ect)
is a rule defined by Robert Gibrat (19041980) in 1931 stating that the proportional rate of growth of a
firm is independent of its absolute size. The law of proportionate growth gives rise to a distribution that is
log-normal [Kalecki, 1945]. Gibrat’s law predicts that firm growth is a purely random e↵ect and therefore
should be independent of firm size.

Gibrat’s law is also applied to cities size and growth rate, where proportionate growth process may give
rise to a distribution of city sizes that is log-normal, as predicted by Gibrat’s law. While the city size
distribution is often associated with Zipf’s law, this holds only in the upper tail, because empirically the
tail of a log-normal distribution cannot be distinguished from Zipf’s law. A study using administrative
boundaries (places) to define cities finds that the entire distribution of cities, not just the largest ones, is
log-normal. But this last claim that the lognormal distribution cannot be rejected has been shown to be the
result of a statistics with little power: the uniformly most powerful unbiased test comparing the lognormal
to the power law shows unambiguously that the largest 1000 cities are distinctly in the power law regime.

5 The Lagrangian Method for Constrained Optimization

The Lagrange multiplier technique lets you find the maximum or minimum of a multivariable function
f(x, y, ...) when there is some constraint on the input values you are allowed to use. This technique applies
to constraints of the form:

g(x, y, ...) = c (37)

where g is another multivariable function with the same input space as f and c is some constant. The core
idea is to look for points where the contour lines of f and g are tangent to each other (the same problem of
finding points where the gradient vectors of f and g are parallel to each other). The technique can be boiled
down into setting the gradient of a certain function, called the Lagrangian, equal to the zero vector.

In Lagrangian mechanics (a reformulation of classical, Newtonian mechannics), the trajectory of a system
of particles is derived by solving the Lagrange equations in one of two forms: either the Lagrange equations
of the first kind, which treat constraints explicitly as extra equations, often using Lagrange multipliers; or
the Lagrange equations of the second kind, which incorporate the constraints directly by judicious choice of
generalized coordinates. In each case, a mathematical function called the Lagrangian is a function of the
generalized coordinates, their time derivatives, and time, and contains the information about the dynamics
of the system. The Lagrangian is defined here as L ⌘ T �V (kinetic energy minus potential energy). If time
does not appear explicitly in the Lagrangian, then energy is conserved.

The equivalent in neoclassical economics is the procedure of constrained optimization of utility that
underpins the marginal theory of value following Walras [Mirowski, 1989, 1991].

5.1 Small Example

Suppose one wants to maximize this function defined on the two-dimensional plane:

f(x, y) = 2x+ y

14



under the constraint
x2 + y2 = 1

In other words, for which (x, y) on the unit circle is the value 2x + y biggest? The Lagrangian takes the
form:

L(x, y,�) = 2x+ y| {z }
f(x,y)

+�(x2 + y2 � 1)

We derive the first-order conditions (FOC) by partially di↵erentiating the Lagrangian L with respect to x,
y, � and set them to zero:

@L
@x

= 2� 2�x = 0 ! x =
1

�
@L
@y

= 1� 2�y = 0 ! y =
1

2�

@L
@�

= x2 + y2 � 1 = 0 ! x = ±
p
1� y2

By solving this set of three equations and three variables, we find two points (x, y,�) = (±2/
p
5,±1/

p
5,±

p
5/2).

The positive point is the maximum and the negative point is the minimum of function f .

6 Lagrangian Methods for Constrained Optimization of Entropy

A common complaint against mainstream economics is the use of extraneous assumptions in order to make
formal theory tractable. The elegance of the method of entropy maximization is that it systematizes the
use of assumptions –formalized as constraints– and allows evaluating how much information each of which
brings to the model. In this direction, it is a mathematical formalization of Ockham’s Razor. Starting from
an initial position of maximum ignorance/uncertainty (i.e. the uniform distribution), we subsequently add
constraints that bring information to the model in a systematic fashion – which we can compute via the
Kullback-Leibler cross entropy.

6.1 Example 0: Expected value (mean) is known

The constrained optimization problem is defined now on entropy H as objective function, defined on the
space of discrete distribution probabilities pi(x) for the random variable X labeled over states i = 1, ..., N ,
under constraints defined following the distribution moments of pi: normalization and mean.

In case we know the mean hXi = µ of the random variable, the maximization problem is [Golan, 2018,
p.167]:

maximize
P

H(P ) = �
X

i

pi log pi

subject to hXi ⌘
X

i

pixi = µ;

X

i

pi = 1

L(p,�
0

,�
1

) = �
X

i

pi log pi

| {z }
entropy

+(�
0

� 1)(
X

i

pi � 1)

| {z }
normalization

+�
1

 
µ�

X

i

pixi

!

| {z }
expected value

(38)

The first order conditions follow from di↵erentiating the Lagrangian with respect to its parameters pi, �0

and �
1

and allow us to define the solution for pi:

@L
@pi

= � log pi � 1� (�
0

� 1) + �
1

xi = 0 (39)

15



Solution pi will have an exponential form due to the derivative of entropy:

log pi = ��
0

� �
1

xi ! pi = e��0��1xi (40)

The FOC for �
0

establishes normalization, where ⌦ is called the partition function. In physical statistical
mechanics, the partition function describes the partitioning among di↵erent microstates and serves as a
generator function for all manner of results regarding a process:

@L
@�

0

=
X

i

pi � 1 = 0 (41)

X

i

pi =
X

i

e��0��1xi =
X

i

e��0e��1xi = e��0
X

i

e��1xi = 1 (42)

⌦(�
1

) = e��0 =
1P

i e
��1xi

(43)

pi =
e��1xi

P
i e

��1xi

=
e��1xi

⌦(�
1

)
(44)

The FOC for �
1

establishes the rate �
1

in terms of the expected value of X, µ:

@L
@�

1

=
X

i

pixi � µ = 0 (45)

X

i

xipi =
X

i

xie��1xi

P
i e

��1xi

=

P
i xie��1xi

⌦(�
1

)
= µ (46)

which yields an implicit equation for �
1

that is solved numerically.

6.2 Example 1: A Coin Toss

What is the probability pH of one unbiased coin toss falling heads? Our intuition says 50%, instinctively
following the maximum-entropy approach. However, we cannot toss a coin infinite times to check what is its
frequency following a frequentist approach. Let’s try to prove that pH = 50% using maxent.

We have two possible events, heads and tails, with probabilities pH and pT respectively. Since they are
probabilities, we know that X

i=H,T

pi = pT + pH = 1 (47)

This is our only constraint: normalization. Entropy H of the distribution pi is:

H(p) = H(pH , pT ) = �pT log pT � pH log pH (48)

Since we know that pT + pH = 1, then pT = 1 � pH , so that entropy is now (where we define pH as x for
simplicity):

H(x) = �x log x� (1� x) log x (49)

We can plot this function:

x<-seq(0,1,by=0.001)
plot(x,-x*log(x)-(1-x)*log(1-x),type='l',xlim=c(0,1),ylim=c(0,log(2)),xlab='Coin Toss Probability Heads p(H)',ylab='Entropy')
grid()
abline(v=0.5,lty=2)
points(0.5,-0.5*log(0.5)-0.5*log(0.5),col='red')
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Let’s compute the maximum of H(pH , pT ) using the Lagrangian multiplier method, with only normal-
ization (47) as the single constraint:

L(pH , pT ,�) = �pH log pH � pT log pT + (1� �) (pH + pT � 1) (50)

The first-order conditions are the following:

@L
@pH

= �1� log pH + 1� � = 0 ! pH = e��

@L
@pT

= �1� log pT + 1� � = 0 ! pT = e�� = pH

@L
@�

= 1� pH � pT = 0 ! 2pH = 1 ! pH = 0.5

Hence, entropy H(p) has a maximum at pT = pH = 0.5 (the uniform distribution), as we expected. At that
point, entropy equals log 2.

6.3 Example 2: Generalizing a coin toss to N outcomes

Now instead of two events (heads and tails) we have N potential outcomes, with probabilities pi for i =
1, ..., N . The Lagrangian takes now the form:

L(p
1

, ..., pN ,�) = �
NX

i

pi log pi � (�� 1)

 
NX

i

pi � 1

!
(51)

The first-order conditions are the following:

@L
@pi

= �1� log pi + 1� � = 0 ! pi = e�� for i = 1, ..., N

17



@L
@�

=
NX

i

pi � 1 = 0

Since all probabilities pi are equal to e��, we can write

NX

i

pi = Np = 1

and thus

pi =
1

N

which is the uniform distribution for discrete outcomes, with entropy is H = �
P

i
1

N log 1N = logN .

6.4 Numerical Example with N = 3 and mean 2.5

Now let’s assume that we also know that N = 3, outcomes are x
1

= 1, x
2

= 2, and x
3

= 3, and the observed
mean is hxi = 2.5. The Lagrangian takes now the form:

L(p
1

, p
2

, p
3

,�) = �
3X

i

pi log pi � (�
0

� 1)

 
3X

i

pi � 1

!
� �

1

 
3X

i

pixi � 2.5

!
(52)

Now the first order condition for pi is:

@L
@pi

= �1� log pi + 1� �
0

� �
1

xi = 0 ! pi = e��0��1xi for i = 1, 2, 3

For the Lagrangian multipliers we obtain the constraints:

3X

i

pi = e��0(e��1 + e�2�1 + e�3�1) = 1 (53)

3X

i

pixi = e��0(e��1 + 2e�2�1 + 3e�3�1) = 2.5

Now we divide the two last equations (to get rid of �
0

) and re-arranging the terms, we obtain:

1.5e��1 + 0.5e�2�1 � 0.5e�3�1) = 0

If we replace e��1 by x (so that �
1

= � log x), we obtain a polynomial of order 3:

x3 � x2 � 3x = x(x2 � x� 3) = 0

which we compute numerically and then retrieve the only possible solution for �
1

:

Re(polyroot(c(0,-3,-1,1)))

[1] 0.000000 -1.302776 2.302776

-log(Re(polyroot(c(0,-3,-1,1))))

## Warning in log(Re(polyroot(c(0, -3, -1, 1)))): NaNs produced
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[1] Inf NaN -0.8341152
Hence �

1

= �0.834. Now we plug e��1 + e�2�1 + e�3�1 = 19.82 into equation (53) to obtain:

e�
0

= 19.82 ! �
0

= log 19.82 = 2.987

Now we can finally compute the probabilities p
1

, p
2

, and p
3

:

c(exp(-2.987+0.834),exp(-2.987+2*0.834),exp(-2.987+3*0.834))

[1] 0.1161352 0.2674026 0.6156972
and plot both distributions:

library(ggplot2)
value<-c(rep(1/3,3),c(exp(-2.987+0.834),exp(-2.987+2*0.834),exp(-2.987+3*0.834)))
distribution<-c(rep('uniform',3),rep('mean 2.5',3))
probability<-rep(paste0('p',1:3),2)
data<-data.frame(probability,distribution,value)
ggplot(data, aes(fill=distribution,x=probability,y=value)) + geom_bar(position="dodge", stat="identity")

0.0

0.2

0.4

0.6

p1 p2 p3
probability

va
lu

e

distribution
mean 2.5

uniform

6.5 Logistic Distribution

Suppose we know a binary (0, 1) variable has mean equal to 3/5. The generic form of probabilities pi will
be e��0��1x. The partition function e��0 will be:

e��0 =
1

e0 + e��1
=

1

1 + e��1

Probability p(x = 1) will be:

p(x = 1) =
e��1

1 + e��1
=

1

1 + e�1
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which we equate to 3/5 to find
�
1

= log 2/3

Hence �
0

= 0.4

x<-seq(-10,10,by=0.01)
plot(x,0.4*exp(-log(2/3)*x)/(1+exp(-log(2/3)*x)),type='l')
grid()
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6.6 Power Law

Let’s compute now the maximum-entropy distribution when we know the average logarithm of the random
variable, i.e. hlog xi = µ [Visser, 2013]. The Lagrangian is:

L(pi,�0

,�
1

) = �
NX

i

pi log pi � (�
0

� 1)

 
NX

i

pi � 1

!
� �

1

 
NX

pi log xi � µ

!
(54)

which yields as first order condition for pi:

� �
1

log xi � �
0

� log pi = 0 ! pi = e��0x��1 (55)

The partition function e�0 happens to be the Riemann zeta function:

e��0 =
1P

i x
��1

=
1

⇣(�
1

)
(56)
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7 Maxent derivation of a continuous distribution: Laplace

In the notes on information theory, we defined the entropy of variable X over a discrete set of events of
probabilities p(xi):

H(X) = �
X

i

p(xi) log p(xi)

If the set of events (ie the values that the random variableX can take) is actually continuous, then analytically
we write the entropy as an integral, not a sum, over the interval (a, b) in which X is defined:

H(X) = �
Z b

a

p(x) log p(x)dx (57)

Let’s consider that we have a single moment constraint: h|x � µ|i = b, which is defined over the whole real
line (�1,+1). Now the Lagrangian takes the form:

L = �
Z 1

�1
p(x) log p(x)dx� (�

0

� 1)

✓Z 1

�1
p(x)dx� 1

◆
� �

1

✓Z 1

�1
p(x)|x� µ|dx� b

◆

Taking the FOC with respect to p(x), we find the general form for p(x):

@L
@p(x)

= �1� log p(x)� �
0

+ 1� �
1

|x� µ| = 0

p(x) = exp (��
0

� �
1

|x� µ|)

Now the two constraints look like:
Z 1

�1
exp (��

0

� �
1

|x� µ|) dx = 1

Z 1

�1
|x� µ| exp (��

0

� �
1

|x� µ|) dx = b

As usual, e��0 will be the partition function that provides normalization. In order to compute the integral
with the absolute function, we separate it into two parts between �1 and µ and µ and 1 where we change
the sign of x in the former (x is negative for that range). The integral gives the same value as if µ = 0.

e+�0 =

Z 1

�1
exp (��

1

|x� µ|) dx =

Z µ

�1
e�1(x�µ)dx+

Z 1

µ

e��1(x�µ)dx =

Z
0

�1
e�1xdx+

Z 1

0

e��1xdx

e+�0 =
e�1x

�
1

|0�1 � e��1x

�
1

|1
0

=
1

�
1

+
1

�
1

=
2

�
1

where we already knew the value of the integral by parts,
Z

xeaxdx =
eax

a2
(ax� 1)

so that the first Lagrange multiplier is:

e��0 =
�
1

2

The second constraint is

b =

Z 1

�1
|x�µ|e(��0��1|x�µ|)dx =

�
1

2

✓Z
0

�1
�xe�1xdx+

Z 1

0

xe��1xdx

◆
= �e�1x

�2

1

(�
1

x�1)|0�1�e�1x

��2

1

(�
1

x�1)|1
0
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b =
�
1

2

✓
1

�2

1

+
1

�2

1

)

◆
=

1

�
1

Hence, the Lagrange multipliers are:

e��0 =
1

2b

�
1

=
1

b

Replacing these values into the general form of p(x), we obtain the Laplace (or double-exponential) distri-
bution:

p(x) =
1

2b
e�

|x�µ|
b

The Laplace distribution is the observed distribution for firm profitability, where µ is average profitability,
under constraint h|r � µ|i = b. What is the significance of b here? Over- and undershooting, maybe? The
di↵erence between two independent identically distributed exponential random variables is governed by a
Laplace distribution, as is a Brownian motion evaluated at an exponentially distributed random time.

8 Entropy Maximization

8.1 Definition of Variables

Let j = 1, ..., N 0 be a set of possible states, each of which characterized by a set of random variables {Xi}
for i = 1..., N . In the simplest case, we have only one variable Xi of interest, such as GDP, unemployment,
inflation, production costs, or profitability, so that N = 1. The set N 0 of possible states are the values
variables {Xi} could take: for instance, if N = 1, the continuous positive real line for the mentioned
variables or 0 and 1 for a binary variable. If N > 1, N 0 comprises the joint values the variables can take.
The j labels the probabilities of the distribution, while i labels the variable. In Golan, k = 1, ...,K labels
the states or probabilities (here j) and m = 1, ...,M labels the variables(here i). Hence, we have a resulting
design matrix X of size N ⇥ N 0 that includes all observations xij where variable Xi is in state j, with
variables per each row and their states per each column. In Golan, the design matrix is xmk of size K ⇥M .

8.2 Generalized Constraints

In the natural sciences, it is common to use constraints that are central moments of the distribution, for
instance the conservation of energy as expected value. In the generalized constraints case, yi is the expected
value of a functional form of Xi, i.e. fi(Xj). Each of these generalized constraints account for a conservation
law.

yi ⌘ hfi(Xi)i =
N 0X

j=1

pjfi(Xj) (58)
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8.3 The Basic Framework (chapter 4)

In the basic framework, we maximize the entropy of the distribution subject to generalized constraints plus
the zeroth normalization constraint:

maximize
P

H(P ) = �
N 0X

j

pj log pj

subject to hXii ⌘
N 0X

j=1

pjfi(Xj) = µ; i = 1, ..., N

N 0X

j=1

pj = 1

pj � 0; j = 1, ..., N 0

(59)

We adjoin a new parameter �i to each one of the constraints or conservation laws 1, ..., N plus �
0

for
normalization. These extra parameters, the Lagrange multipliers can be thought of as penalties for constraint
violation. The associated first-order conditiobn yield a set of N + N 0 + 1 equations and parameters to be
solved. The Lagrangian is:

L(p,�) = �
NX

i

pi log pi + (�
0

� 1)

 
NX

i

pi � 1

!
+

NX

i=1

�i

0

@yi �
N 0X

j=1

pjfi(Xj)

1

A (60)

The general form for the solution pj is obtained from the FOC for pj :

pj = e��0�
P

N

0
j=1 �

i

f
i

(X
j

) = exp

 
��

0

�
NX

i=1

�ifi(Xj)

!
(61)

Normalization parameter �
0

is associated with the partition function ⌦(�):

�
0

= log

0

@
N 0X

j=1

exp�
NX

i=1

�ifi(Xj)

1

A = log⌦(�) (62)

The maximum-entropy solution is finally:

pj =
exp

⇣
�
PN

i=1

�ifi(Xj)
⌘

PN 0

j=1

exp
⇣
�
PN

i=1

�ifi(Xj)
⌘ =

exp
⇣
�
PN

i=1

�ifi(Xj)
⌘

⌦(�)
(63)

and we can write now the i = 1, ..., N constraints as:

yi =
X

j

xijpj =

P
j xij exp

⇣
�
PN

i=1

�ifi(Xj)
⌘

⌦(�)
i = 1, ..., N (64)

The entropy then becomes

Hmax(P ) = log⌦| {z }
�0

+
NX

i=1

�iyi (65)

We can also rewrite the constraints as the partial derivative of the logarithm of the partition function (i.e.
�
0

), which illustrates the relevance of the Lagrangian multipliers:

yi = �@ log⌦(�)

@�i
(66)
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so that
@Hmax

@yi
= �i i = 1, ..., N (67)

Now we define matrices B and I of size N ⇥N so that B = I�1 using the chain rule for di↵erentiation:

Bmk ⌘ � @2 log⌦

@�k@�m
=

@ym
@�k

=
@yk
@�m

m, k = 1, ..., N (68)

Imk ⌘ � @2H

@�m@�k
=

@�m

@yk
=

@�k

@ym
m, k = 1, ..., N (69)

The matrix B is the negative of the covariance of functions fi(Xj), which shows a universal relationship
between the fluctuations of fi(Xj) and @yi/@�k:

hfi(Xj)� yiihfk(Xj)� yki = hfifki � yiyk =
@2 log⌦

@�i@�k
= �Bik i, k = 1..., N (70)

The relationship is a consequence of the envelope theorem, which also is used in microeconomic theory and
relates the Hicksian demand (the solution of the expenditure minimization problem subject to fixed utility)
with uncompensated Walrasian demands in the context of the Slutsky matrix (which must be negative
semidefinite because we are in an optimization problem). The derivations of Roys Identity and Shepards
Lemma, as well as the interpretation of the Lagrange multipliers are all special cases of what is known as the
envelope theorem. “The symmetry of Dph(p, u) is an unexpected property” [Mas-Colell et al., 1995, p.70].
Really? The envelope theorem is just a mathematical result about the di↵erentiability properties of the
objective function of a parameterized optimization problem. As we change parameters of the objective, the
envelope theorem shows that, in a certain sense, changes in the optimizer of the objective do not contribute
to the change in the objective function. The envelope theorem is an important tool for comparative statics
of optimization models.

8.4 Lagrange Multipliers and Information

8.4.1 Information View

From the point of view of information and optimization theories, the Lagrange multipliers capture the relative
information of each one of the conservation rules (constraints). It is the marginal amount of information a
cer- tain constraint contributed to the reduction of the entropy of the inferred distribution. Recalling that
the entropy reaches its maximal level when there are no constraints, the Lagrange multipliers capture the
amount of entropy that is reduced. The larger the magnitude of that multiplier, the larger its contribution
relative to all other information used is shown in equation (67):

@Hmax

@yi
= �i i = 1, ..., N

But it is only a measure that is relative to the information set used. If, on the other hand, an estimated
Lagrange multiplier is practically zero, it means that there is no additional information in the associated
constraint; the inferred probability distribution is una↵ected by this additional information. That constraint
should not be used.

8.4.2 Statistical View

In more statistical terms, we can phrase the above as a statistical hypothesis: a hypothesis about the world
around us that is expressed as a question (or a statement) with a yes/no answer. These hypotheses are about
the theory or population, and the answer (whether the theory is true or not) is conditional on the observed
information. In our context, the hypothesis that a certain piece of information (say constraint i) does not
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provide any information about the system analyzed is specified as the hypothesis �i = 0. The answer to this
hypothesis is a function of the inferred solution �⇤

i . If, for example, �⇤
i = 0, it is highly probable that we will

fail to reject our hypothesis. If, on the other hand, �⇤
i is very far from zero, we may tend not to accept our

hypothesis.
The marginal e↵ects of the Lagrange multipliers �i on probabilities pj can be computed at di↵erent

quantiles of the inferred distribution:

@pj
@�i

= �pi

0

@xij �
N 0X

j=1

pjxij

1

A (71)

The inferred Lagrange multipliers are the estimated values of the parameters in the probability distribution
of interest–the distribution describing the information-generating process.

8.5 The Concentrated Framework

The basic framework presents the primal model, i.e. a problem of constrained optimization where optimiza-
tion is carried with respect to the probabilities pj . The dual problem is the unconstrained, concentrated
version of the primal model, where it is concentrated on the minimally necessary set of parameters (the
�i Lagrange multipliers for i = 1, ..., N) required for a full description of the system by ensuring that the
conservation rules or constraints are satisfied.

The Lagrangian function (or potential function) is now:

L(p,�) = H(p) + (�
0

� 1)

 
NX

i

pi � 1

!
+

NX

i=1

�i

0

@yi �
N 0X

j=1

pjfi(Xj)

1

A (72)

The concentrated model is:

`(�) = �
N 0X

j=1

pj log pj +
NX

i=1

�i

0

@yi �
N 0X

j=1

pjfi(Xj)

1

A = log⌦(�)| {z }
�0

+
NX

i=1

�iyi (73)

The dual problem provides a lower bound on the objective value of the primal problem and thus entails
minimization. Di↵erentiating with respect to the Lagrange multipliers one obtains the conservation rules of
the primal problem as first order conditions of the concentrated model:

@`(�)

�i
= yi �

N 0X

j=1

pjfi(Xj) (74)

Normalization factor �
0

, the logarithm of the partition function ⌦, a function of the N Lagrange multipliers,
is also known as the potential for the problem, whose derivatives are the expected values of the elements of
the system.

8.6 The Complete Framework (with Noise; Chapter 9)

Now we must address theory uncertainty and model uncertainty, as well as uncertainty about the observed
information. One way to accomplish this is to allow for uncertainty in the constraints themselves. Let hF i
the actual, underlying theory (possible yet uncertain) represented in terms of expected values and hF 0i the
approximate theory we have based on our input information (on the observed sample) such that

hF 0i = hF i+ ✏
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where ✏ captures the uncertainty surrounding our model, knowledge, and observed information, i.e. “noise”.
For ✏ = 0, we retrieve the basic framework without noise. In general terms, for N theories or conservation
rules:

hF 0
i i ⌘ yi = hF i+ ✏ =

N 0X

j=1

pjfi(Xj) + ✏i (75)

In order to define this rigorously, we define error ✏i as the expected value of an underlying auxiliary distri-
bution “noise”:

✏i ⌘
KX

k=1

wikvik (76)

We consider Vi as the support of a random variable with mean zero and some unknown distribution so that
✏i 2 Vi in a way that ✏i can be viewed as a convex combination of the lower and upper bounds of Vi. For
each ✏i with i = 1, ..., N , we define a K dimensional discrete random variable Vi and a corresponding K

dimensional probability distribution wik such that wik � 0 and
PN 0

k=1

wik = 1. Consequently, we can write:

yi =
N 0X

j=1

pjfi(Xj) + ✏i =
N 0X

j=1

pjfi(Xj) +
KX

k=1

wikvik (77)

and now the complete problem entails inferring not only p but also w, which are conditional on the information
we have and on the errors’ support as specified by the researcher:

maximize
P,W

H(P,W ) = H(P ) +H(W ) = �
N 0X

j

pj log pj +�
KX

k

wik logwik

subject to yi =
N 0X

j=1

pjfi(Xj) +
KX

k=1

wikvk; i = 1, ..., N

N 0X

j=1

pj = 1;
KX

k=1

wij = 1 i = 1, ..., N

pj � 0; and wik � 0; j = 1, ..., N 0; k = 1, ...,K

(78)

The Lagrangian function is now:

`(p, w,�, µ) = H(P )+H(W )+
NX

i=1

�i

0

@yi �
N 0X

j=1

pjfi(Xj)�
KX

k=1

wikvk

1

A+(�
0

�1)

0

@1�
N 0X

j

pj

1

A+
NX

i

(µi�1)

 
1�

KX

k

wik

!

(79)
From the FOC, we obtain N+1 partition functions, ⌦ that captures the information of the underlying theory
for pi, and  i for i = 1, ..., N for the noise probabilities that capture the uncertainty about the theory:

�
0

= log

0

@
N 0X

j=1

exp�
NX

i=1

�ifi(Xj)

1

A = log⌦(�) (80)

µi = log

 
KX

k=1

exp��ivk

!
⌘ log i(�i) i = 1, ..., N (81)

The general solution for the complete framework is thus:

pj =
exp

⇣
�
PN

i=1

�ifi(Xj)
⌘

PN 0

j=1

exp
⇣
�
PN

i=1

�ifi(Xj)
⌘ =

exp
⇣
�
PN

i=1

�ifi(Xj)
⌘

⌦(�)
j = 1, ..., N 0 (82)
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wik =
exp (��ivk)PK
k=1

exp (��ivk)
=

exp (��ivk)

 i(�i)
i = 1, ..., N ; k = 1, ...,K (83)

Now the Lagrange multipliers �i are not only determined by the expected values yi, but also the noise Vi:

� yi =
@ log⌦(�)

@�i
+

@ log i(�i)

@�i
(84)

Finally, ✏⇤i =
P

k w
⇤
ikvk where h✏⇤i i is not necessarily zero, but determined from the observed information.

The maximal entropy is also a function of the expected values:

Hmax(P,W ) = log⌦| {z }
�0

+
X

i

log i| {z }
µ
i

+
X

i

�iyi (85)

In the concentrated framework, we have:

`(�) =
X

i

�iyi + �
0

+
X

i

µi (86)

The FOC for the �’s reflects the primal-dual relationship, where the optimal conditions of the concentrated
model are just the (noisy) conservation rules of the primal problem:

@`(�)

@�i
= yi �

X

j

pjfi(Xj)�
X

k

wikvk (87)

8.7 Linear Regression (Chapter 13)

Consider a sample of independent observations that can be characterized as a set of K dimensional vectors
of observations labeled as i = 1, ..., N . The design matrix X, the covariates, now has size N ⇥K.

yi = f(xi;�) + ✏i (88)

where f(xi;�) is a given function with an unknown K dimensional vector of parameters � and ✏i are
independent random errors with conditional mean zero and positive conditional variance, i.e h✏i|xii = 0 and
var(✏i|xi) = �2(xi). In the linear model:

f(xi;�) =
X

k

xik�k

The Least Squares solution is just a minimization with respect to the � parameters of the sum of the squares
of the errors

NX

i=1

(yi � f(xi;�))
2

which is achieved by computing the first order conditions:

NX

i=1

@f(xi;�)

@�
(yi � f(xi;�))

While the Least Squares solution does not require any assumption on the shapes of the error terms, the
Maximum Likelihood method requires us to specify a likelihood function.

As in chapter 9, Golan allows the model coe�cients to be random variables drawn from a frequency
distribution over another support set, chosen to include all of the plausible values for the �:

�k =
X

j

pjkzk (89)
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Once the problem has been generalized to this under-determined form, the constrained maximum entropy
method takes over and produces the constrained maximization problem:

maximize
P,W

H(P,W ) = H(P ) +H(W )

subject to
X

j

pjk = 1; k = 1, ...,K

X

s

wst = 1 t = 1, ..., T

yt = �
0

+
X

k

�kxkt + ✏t =
X

j

p
0jz0j +

X

k

X

j

pkjzkjxkt +
X

s

wstvs

(90)

9 Entropy-constrained quantal response

One important economic example of the constrained maximum entropy method is individual choice of an
action, such as buying or selling an asset, or entering or exiting some particular market as a producer in
response to a payo↵. Suppose an actor has a set of actions A = {a

1

, ..., aK}, each of which has a payo↵
u(ak) = uk, and acts according to a mixed strategy described by the frequency distribution {f

1

, ..., fK}. The
expected payo↵ is

PK
k fkuk.

The constrained maximum entropy model of action maximizes the entropy of the frequency distribution
subject to a constraint on the minimum level of expected payo↵:

maximize
f

�
KX

k

fj log fj

subject to
X

k

fk = 1

umin  max(uk)

(91)

In the model, the actor is satisficing rather than maximizing.
The constrained maximum entropy solution in the action-payo↵ model is a generalization of the quantal

response model that is widely used in econometrics:

fk =
exp�ukP
k exp�uk

(92)

where � is the Lagrange multiplier corresponding to the expect payo↵ constraint. The quantal response
model has the intuitive property that the logarithm of the frequency with which we observe any given action
is equal to its utility plus a constant o↵set. The coe�cient � is a measure of the responsiveness of the actor
to di↵erences in payo↵.

For two actions where u
1

= 0, u
2

= 1, and � = 1/T?

x<-seq(-10,10,by=0.01)
plot(x,1/(1+exp(-0.5*x)),type='l',ylab='Probability',xlab='Action')
lines(x,1/(1+exp(-1*x)),type='l',col='tomato')
lines(x,1/(1+exp(-0.25*x)),type='l',col='steelblue')
grid()
legend('topleft',paste('T:',c(1/0.5,1,1/0.25)),pch=16,col=c('black','tomato','steelblue'),bty='n',bg='transparent')

28



−10 −5 0 5 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Action

Pr
ob

ab
ilit

y

T: 2
T: 1
T: 4

This derivation of logistic quantal response behavior is essentially equivalent to Christopher Sims’ theory
of “rational inattention” [Sims, 2003].

Logistic quantal response behavior can be regarded as a generalization of rational choice theory, in so
far as the decision-maker, as in rational choice theory, has well-defined payo↵s over actions, and maximizes
expected utility in choosing a mixed strategy, which results in more frequent choices of higher-payo↵ actions.
The new element in entropy-constrained behavior is the behavior temperature, which limits the degree to
which the decision-maker can concentrate frequency on the highest-payo↵ action.

10 Computational Examples of Constrained Optimization

In this section, I introduce some examples of constrained optimization using computational software. An
appropriate software to compute constrained optimization is GAMS - you can check examples in the Info-
Metrics website. There are a lot of packages in R that allow the user to compute constrained optimization.
In our case, we are interested in packages that solve optimization problems with (1) a nonlinear objective
function and (2) equality and inequality constraints. The inequality constraints are to define the distribution
probabilities, which are the parameters in the objective function, as nonnegative.

The two packages we will be using are alabama and NlcOptim, with respective functions auglag and solnl.

install.packages('alabama')

## Error in contrib.url(repos, "source"): trying to use CRAN without setting a mirror

install.packages('NlcOptim')

## Error in contrib.url(repos, "source"): trying to use CRAN without setting a mirror

library(alabama)

## Loading required package: numDeriv
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library(NlcOptim)

## Loading required package: MASS

Figure 4: Documentation of Function auglag

10.1 3 Events, No Mean

We first define the objective function (the entropy), which will be the same for all the computations, and its
gradient. The gradient is a vector of partial derivatives with respect to each of the function variables (the
probabilities), which we also obtain in the FOC. The function of the parameter is the vector of probabilities
x (pj in our analytical notation). Because the software computes minimization and not maximization, we
eliminate the negative sign of the entropy to search for minima without loss of generality. We also want to
avoid the computation of logarithm of zeros (i.e. 0 log 0 ⌘ 0).

entropy<-function(x)
{
p<-x[x!=0]
sum(p*log(p))

}
entropy_gr<-function(x) {ifelse(x==0,0,log(x)+1)} # a vector of partial derivatives wrt the p's

As in our analytical derivation, we define the values of the 3 events, xj = j for j = 1, 2, 3 in the vector f :

f<-c(1,2,3)

In order to introduce the constraints for auglag, we need a vector for the equality constraints heq (so
that heqj = 0 for all j), a vector for the inequality constraints hin (so that hinj > 0 for all j), and their
corresponding Jacobian matrices (partial derivatives) of size N ⇥N 0, where number of rows N is the number
of constraints and number of columns N 0 is the support space (number of events) of probability distribution
pj :
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heq <- function(x) { # vector

h <- rep(NA, 1)
h[1] <- sum(x) - 1 # zeroth moment constraint: normalization

# h[2] <- sum(f*x) - 2.5 # first moment constraint: mean

h
}
heq.jac <- function(x) { # matrix

j <- matrix(NA, 1, length(x))
j[1, ] <- c(1, 1, 1) # partial derivatives of the normalization constraint wrt the p's

# j[2, ] <- c(1,2,3) # values of f, ie partial derivatives of the mean wrt the p's

j
}
hin <- function(x) { # vector

h <- x # vector of probabilities must be nonnegative in all entries

h
}
hin.jac <- function(x) { # matrix

diag(length(x)) # partial derivatives of hin wrt the p's

}

Finally we can call the function auglag, where the first parameter is the initial vector from which to start
the numerical computation:

results<-auglag(runif(3,0,.3),entropy,entropy_gr,heq=heq,heq.jac=heq.jac,hin=hin,hin.jac=hin.jac)

The results are given in the object par:

results$par

## [1] 0.3333333 0.3333333 0.3333333

10.2 3 Events, Mean 2.5

Now we add a constraint, the mean is 2.5. We only have to change hin and hin.jac:

heq <- function(x) { # vector

h <- rep(NA, 1)
h[1] <- sum(x) - 1 # zeroth moment constraint: normalization

h[2] <- sum(f*x) - 2.5 # first moment constraint: mean

h
}
heq.jac <- function(x) { # matrix

j <- matrix(NA, 2, length(x)) # 2 rows now !!

j[1, ] <- c(1, 1, 1) # partial derivatives of the normalization constraint wrt the p's

j[2, ] <- c(1, 2, 3) # values of f, ie partial derivatives of the mean wrt the p's

j
}
results<-auglag(runif(3,0,.3),entropy,entropy_gr,heq=heq,heq.jac=heq.jac,hin=hin,hin.jac=hin.jac)

The results are given in the object par, which we can compare to the analytical results we obtained
earlier:

31



results$par

## [1] 0.1162041 0.2675917 0.6162041

c(exp(-2.987+0.834),exp(-2.987+2*0.834),exp(-2.987+3*0.834))

## [1] 0.1161352 0.2674026 0.6156972

10.3 Exponential Distribution

We generate 200 random values val following a exponential distribution with rate 2 (the rate is the Lagrange
multiplier and the inverse of the mean, which is 0.5). We define the support space f in bins of size 0.05
between 0 and the maximum random value. In addition, we also define the corresponding equality constraints
(we only generalize the functions where now the number of columns is not 3, but the length of the f vector).

val<-rexp(200,2)
mu<-mean(val)
f<-seq(0,max(val),by=0.05)

heq <- function(x) {
h <- rep(NA, 1)
h[1] <- sum(x) - 1
h[2] <- sum(f*x) - mu
h

}
heq.jac <- function(x) {
j <- matrix(NA, 2, length(x))
j[1, ] <- rep(1,length(x))
j[2, ] <- f
j

}
init<-rnorm(length(f),1/length(f),0.1/length(f))
results_e1<-auglag(init,entropy,entropy_gr,heq=heq,heq.jac=heq.jac,hin=hin,hin.jac=hin.jac)

tmp<-density(val,bw=0.02,n=length(f)) # distribution of val with length of f as number of bins

x_<-tmp$x
y_<-tmp$y/sum(tmp$y) # we want the discrete sum of actual densities to be 1

p<-exp(-x_/mu)/sum(exp(-x_/mu)) # analytical solution with known mean (which is computed)

p2<-exp(-x_/0.5)/sum(exp(-x_/0.5)) # underlying distribution of the data-generating process

plot(x_,y_,type='l',lwd=2,xlab='random variable',ylab='probability') # plot distribution

lines(x_,p2,col='gray',lwd=2) # real distribution

lines(x_,p,col='tomato',lwd=2) # plot analytical solution

lines(f,results_e1$par,col='steelblue',lwd=2) # plot computational solution

legend('topright',c('observed','real','analytical','computational'),col=c('black','gray','tomato','steelblue'),pch=16,bty='n')
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The mean is

mu

[1] 0.5064616

sum(f*results_e1$par)

[1] 0.5064616

10.4 3 Events with Noise, Known Mean

Now we introduce noise in our former example with N 0 = 3 events. In order to do so, we need to define
the support space V for the noise, with the symmetry and 0 requirement (3 values are enough). Now the
R parameter x is not only the probability vector pj with j = 1, ..., N 0, but (p

1

, p
2

, ..., pN 0 , w
1

, w
2

, w
3

), where
we add at the end the weights for noise V , which work like probabilities. With this definition, we do not
have to change the objective function, which now is H(p) +H(w), or the gradient.

f<-c(1,2,3)
v<-c(-5,0,5)
mu<-2.5
heq <- function(x) {
h <- rep(NA, 1)
h[1] <- sum(x[1:3]) - 1 # sum of probabilities p is 1

h[2] <- sum(x[4:6]) - 1 # sum of noise weights w is 1

h[3] <- sum(f*x[1:3]) + sum(v*x[4:6]) - 2.5 # noisy mean is 2.5

h
}
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heq.jac <- function(x) {
j <- matrix(NA, 3, length(x))
j[1, ] <- c(1, 1, 1, 0, 0, 0)
j[2, ] <- c(0, 0, 0, 1, 1, 1)
j[3, ] <- c(1,2,3,-1,0,1) # c(f,v)

j
}
init<-runif(6,0,.3)
results<-auglag(init,entropy,entropy_gr,heq=heq,heq.jac=heq.jac,hin=hin,hin.jac=hin.jac)

The vector of computed probabilities pj and noise weights wk is now, which we compare to the analytical
solution without noise:

results$par

## [1] 0.3005519 0.3510053 0.3484428 0.2948318 0.3199147 0.3852536

c(exp(-2.987+0.834),exp(-2.987+2*0.834),exp(-2.987+3*0.834))

## [1] 0.1161352 0.2674026 0.6156972

The real mean and the noise is now:

sum(f*results$par[1:3])

## [1] 2.047891

sum(v*results$par[4:6])

## [1] 0.452109

10.5 Exponential Distribution with Noise

Now we calculate the computational solution for the exponential scenario with the same set of random values
val, but now with noise. The support space for V has now 5 elements, with upper and lower bounds defined
by (�3�,+3�).

mu<-mean(val)
f<-seq(0,max(val),by=0.05)
v<-c(-3*sd(val),-1.5*sd(val),0,1.5*sd(val),3*sd(val))
v<-c(-sd(val),0,sd(val)) # actually this support space works better, don't @ me

heq <- function(x) {
h <- rep(NA, 1)
h[1] <- sum(x[1:length(f)]) - 1
h[2] <- sum(x[(length(f)+1):(length(f)+length(v))]) - 1
h[3] <- sum(c(f,v)*x) - mu
h

}
heq.jac <- function(x) {
j <- matrix(NA, 3, length(x))
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j[1, ] <- c(rep(1,length(f)),rep(0,length(v)))
j[2, ] <- c(rep(0,length(f)),rep(1,length(v)))
j[3, ] <- c(f,v)
j

}
init<-c(rnorm(length(f),1/length(f),0.1/length(f)),rep(1/length(v),length(v)))
results_e2<-auglag(init,entropy,entropy_gr,heq=heq,heq.jac=heq.jac,hin=hin,hin.jac=hin.jac)

plot(x_,y_,type='l',lwd=2,xlab='random variable',ylab='probability') # plot distribution

lines(x_,p2,col='gray',lwd=2) # real distribution

lines(x_,p,col='tomato',lwd=2) # analytical solution

lines(f,results_e1$par,col='steelblue',lwd=2) # computational solution w/o noise

lines(f,results_e2$par[1:length(f)],col='green',lwd=2) # computational solution with noise

legend('topright',c('observed','real','analytical','w/o noise','w noise'),col=c('black','gray','tomato','steelblue','green'),pch=16,bty='n')
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The real mean and the noise is now:

sum(f*results_e2$par[1:length(f)])

## [1] 0.6721069

sum(v*results_e2$par[(length(f)+1):(length(f)+length(v))])

## [1] -0.1656452
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10.6 Linear Regression, with real Gaussian errors

In the linear regression example, we generate a set of 121 coordinates (x, y) (which we label as x
0

, y
0

) where
x goes from -3 to 3 at 0.05 intervals and

y = 1 + 0.5x+N(0, 1)

Hence in our example, the real intercept is �
0

= 1 and the real slope is �
1

= 0.5. We construct three support
spaces, each with 3 elements: one for the noise weights V as before, one for the probabilities of the intercept,
and one for the probabilities of the slope, i.e. the latter two go into Z, which is problem-specific.

Now the parameter x of the objective function has length 3T+6, where T is the number of observations: 3
probabilities for the intercept, 3 probabilities for the slope, and 3 noise weights for each of the T observations
(in that order). We have now 2T + 2 constraints: T + 2 normalization constraints and one constraint per
each of the T observations.

x0<-seq(-3,3,by=.05)
y0<-1+0.5*x0+rnorm(length(x0),0,1)
v<-c(-3*sd(y0),0,3*sd(y0))
z<-c(-50,0,50,-30,0,30)

heq <- function(x)
{
h <- rep(NA, 1)
h[1] <- sum(x[1:3]) - 1
h[2] <- sum(x[4:6]) - 1
for(i in 1:length(x0)){h[i+2] <- sum(x[(3*(i-1)+1+6):(3*i+6)]) - 1}
for(i in 1:length(x0)){h[i+length(x0)+2]<-sum(x[1:3]*z[1:3])+sum(x[4:6]*z[4:6]*x0[i])+sum(x[(3*(i-1)+1+6):(3*i+6)]*v) - y0[i]}
# h[i+length(x0)+2]<-sum(x[1:3]*z[1:3])+sum(x[4:6]*z[4:6]*x0[i]) +

# + sum(x[(3*(i-1)+1+6):(3*i+6)]*v) - y0[i] - the complete line in the last 'for' loop

h
}
heq.jac <- function(x)
{
j <- matrix(NA, 2*length(x0)+2, length(x))
j[1, ] <- c(rep(1,3),rep(0,3+3*length(x0)))
j[2, ] <- c(rep(0,3),rep(1,3),rep(0,3*length(x0)))
for(i in 1:length(x0))
{
j[i+2,] <- 0
j[i+2,(3*(i-1)+1+6):(3*i+6)]<- 1

}
for(i in 1:length(x0))
{
j[i+length(x0)+2, ] <- 0
j[i+length(x0)+2,1:6] <- c(z[1:3],x0[i]*z[4:6])
j[i+length(x0)+2,(3*(i-1)+1+6):(3*i+6)]<-v

}
j

}
init<-rep(1/3,6+3*length(x0))
res_l<-auglag(init,entropy,entropy_gr,heq=heq,heq.jac=heq.jac)
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beta0<-sum(res_l$par[1:3]*z[1:3])
beta1<-sum(res_l$par[4:6]*z[4:6])
c(beta0=beta0,beta1=beta1)

beta0 beta1 1.0689130 0.4926729

plot(x0,y0,xlab='x0',ylab='y0')
lfit<-lm(y0 ~ x0)
library(xtable)
print(xtable(summary(lfit)),type='latex')

Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.0675 0.0884 12.08 0.0000

x0 0.4944 0.0506 9.77 0.0000

abline(1,0.5,col='gray',lwd=2) # real line

abline(lfit,col='tomato',lwd=2) # standard fit

abline(beta0,beta1,col='steelblue',lwd=2) # maxent fit

legend('topleft',c('real','standard fit','maxent fit'),col=c('gray','tomato','steelblue'),pch=16,bty='n')
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10.7 Linear Regression, with more elements in the support spaces

In another linear regression example, we generate a set of 201 coordinates (x, y) (which we label as x
0

, y
0

)
where x goes from -5 to 5 at 0.05 intervals and

y = 10� 2x+N(0, 3)
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Hence in our example, the real intercept is �
0

= 8 and the real slope is �
1

= �2. Once again, we construct
three support spaces (for the noise and both regressors), but now each with 5 elements. Our goal here is to
obtain more accurate resulting distributions.

x0<-seq(-5,5,by=0.05)
y0<-8-2*x0+rnorm(length(x0),0,3)
v<-c(-3*sd(y0),-1.5*sd(y0),0,1.5*sd(y0),3*sd(y0))
z<-c(-50,-25,0,25,50,-30,-15,0,15,30)
b0<-1:(0.5*length(z)) # support space interval for beta0, former example was 1:3

b1<-(0.5*length(z)+1):length(z) # support space interval for beta1, former example was 4:6

heq <- function(x)
{
h <- rep(NA, 1)
h[1] <- sum(x[b0]) - 1
h[2] <- sum(x[b1]) - 1
for(i in 1:length(x0)) # 2 equality constraints for each obs in the same for loop

{
cnt<-(length(v)*(i-1)+1+length(z)):(length(v)*i+length(z))
h[i+2] <- sum(x[cnt]) - 1
h[i+length(x0)+2]<-sum(x[b0]*z[b0])+sum(x[b1]*z[b1]*x0[i])+sum(x[cnt]*v) - y0[i]

}
h

}
heq.jac <- function(x)
{
j <- matrix(0, 2*length(x0)+2, length(x)) # "default" value for j is 0, not NA

j[1,b0] <- 1
j[2,b1] <- 1
for(i in 1:length(x0)) # 2 equality constraints for each obs in the same for loop

{
cnt<-(length(v)*(i-1)+1+length(z)):(length(v)*i+length(z))
j[i+2,(length(v)*(i-1)+1+length(z)):(length(v)*i+length(z))]<- 1
j[i+length(x0)+2,b0] <- z[b0]
j[i+length(x0)+2,b1] <- x0[i]*z[b1]
j[i+length(x0)+2,(length(v)*(i-1)+1+length(z)):(length(v)*i+length(z))]<-v

}
j

}
init<-rep(1/length(v),length(z)+length(v)*length(x0))
res_l2<-auglag(init,entropy,entropy_gr,heq=heq,heq.jac=heq.jac)

beta0<-sum(res_l2$par[b0]*z[b0])
beta1<-sum(res_l2$par[b1]*z[b1])

library(ggplot2)
value<-res_l2$par[c(b0,b1)]
regressor<-c(rep('intercept b0',0.5*length(z)),rep('slope b1',0.5*length(z)))
support<-rep(paste0('z[',1:(0.5*length(z)),']'),2)
data<-data.frame(support,regressor,value)
ggplot(data, aes(fill=regressor,x=support,y=value)) + geom_bar(position="dodge", stat="identity") + labs(title='Distributions for the Regressors')
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c(beta0=beta0,beta1=beta1)

beta0 beta1 8.155763 -2.048630

plot(x0,y0,xlab='x0',ylab='y0')
lfit2<-lm(y0 ~ x0)
library(xtable)
print(xtable(summary(lfit2)),type='latex')

Estimate Std. Error t value Pr(>|t|)
(Intercept) 8.1586 0.2156 37.84 0.0000

x0 -2.0503 0.0743 -27.59 0.0000

abline(8,-2,col='gray',lwd=2) # real line

abline(lfit2,col='tomato',lwd=2) # standard fit

abline(beta0,beta1,col='steelblue',lwd=2) # maxent fit

legend('topright',c('real','standard fit','maxent fit'),col=c('gray','tomato','steelblue'),pch=16,bty='n')
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10.8 Linear Regression with Uniformly Distributed Errors

Now we implement the same problem, but the generating random distribution for the errors is no longer a
Gaussian, but a uniform distribution:

x0<-seq(-5,5,by=0.05)
y0<-8-2*x0+runif(length(x0),-10,10)
v<-c(-3*sd(y0),-1.5*sd(y0),0,1.5*sd(y0),3*sd(y0))
z<-c(-50,-25,0,25,50,-30,-15,0,15,30)
res_l3<-auglag(init,entropy,entropy_gr,heq=heq,heq.jac=heq.jac)
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beta0
beta1 7.975009 -2.115185

Estimate Std. Error t value Pr(>|t|)
(Intercept) 7.9902 0.4201 19.02 0.0000

x0 -2.1211 0.1448 -14.65 0.0000
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10.9 NlcOptim package: solnl function for 3 events, with unknown and known
mean 2.5

Figure 5: Documentation of Function solnl
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constraints<-function(x){
f<-NULL
f<-rbind(f,sum(x)-1)
foo<-NULL
foo<-as.matrix(-x) # inequalities have to be written as <0

return(list(ceq=f,c=foo))
}

x0<-rnorm(3,1/3,0.1/3)
res_3<-solnl(x0,objfun=entropy,confun=constraints)

val<-c(1,2,3)
mu<-2.5
#constraint function

constraints<-function(x){
f<-NULL
f<-rbind(f,sum(x)-1)
f<-rbind(f,sum(val*x)-mu)
foo<-NULL
foo<-as.matrix(-x) # inequalities have to be written as <0

return(list(ceq=f,c=foo))
}

x0<-rnorm(3,1/3,0.1/3)
res_3_1<-solnl(x0,objfun=entropy,confun=constraints) # analytical values are 0.1161352 0.2674026 0.6156972

res_3$par

## [,1]
## [1,] 0.3333314
## [2,] 0.3333596
## [3,] 0.3333090

res_3_1$par

## [,1]
## [1,] 0.1162041
## [2,] 0.2675919
## [3,] 0.6162041

11 Priors (Chapter 8)

Prior information is the information that is available in advance of inference and is then used in conjunction
with the new observable information for the inference. Prior information incorporates any information
that potentially influences the specification of a problem but that arises outside of the determining system.
Constructing and quantifying this prior information remains a challenge across all disciplines – especially
in the social sciences, where priors are often based not on observed phenomena but rather on underlying
unobserved beliefs.

By introducing prior information in the maxent framework, we finally obtain the complete infometrics
problem. As in the original template, the setting is a state space with K states, x

1

, ..., xK , and a corre-
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sponding target distribution f over K (p for Golan). The prior frequency distribution is f
0

or q and may be
uniform.

Now the objective is to minimize the Kullback-Leibler divergence between f and f
0

subject to M moment
constraints defined by functions gm, including noise w. We want distributions f and w to bring in minimal
information with respect to f

0

and w
0

.

minimize
P

DKL(f ||f0) +DKL(w||w0

) =
X

k

fk log
fk
f
0k

subject to
X

k

fkgm(xk) = ym m = 1, ...,M ;

X

j

fk = 1

11.1 Multi-Parameter Example: Size Distribution - An Industry Simulation

This is the example of Uniformia in Golan’s book. First, we solve the problem with standard entropy maxi-
mization [Golan, 2018, pp.114-117] and in the second stage we solve the problem with a prior distribution,
where we will minimize the Kullback-Leibler divergence with respect to our priors [Golan, 2018, pp.206-207].

Uniformia is a new country we know nothing about except that it has one industry with K = 10 di↵erent
sizes of firms. Each firm uses a single input to produce a single output. We want to infer the size distribution
of firms pk based on all possible information – but we only know the average input x

1

, ..., x
10

and output
y
1

, ..., y
10

levels per firm size k = 1, ..., 10, as well as their aggregate averages x̄ and ȳ:

hXi = X̄ =
10X

k=1

xkpk (93)

hY i = Ȳ =
10X

k=1

ykpk (94)

These are two constraints in addition to normalization,
P

10

k=1

pk = 1. Further, output and input levels are
not independent, but related to each other through the production function yk = fk(xk):

yk = ↵x�
k

k + ✏k (95)

where ↵ = 2, �k = (.4, .4, .4, .4, .7, .7, .7, 1.5, 1.5), ✏k is a zero-mean Gaussian error with variance (1, 1, 1, 1, 1, 2, 2, 3, 3, 3).
Via the �, the largest two groups have increasing returns to scale, while the rest have decreasing returns to
scale.

11.1.1 Without priors

Without priors, the size distribution optimization problem is then:

maximize
P

H(p) = �
X

k

pk log pk

subject to

hXi = X̄ =
10X

k=1

xkpk

hY i = Ȳ =
10X

k=1

ykpk

10X

k=1

pk = 1
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with solution

p⇤k =
exp (��⇤

1

xk � �⇤
2

yk)P
1 0k=1

exp (��⇤
1

xk � �⇤
2

yk)
=

exp (��⇤
1

xk � �⇤
2

yk)

⌦(�⇤
1

,�⇤
2

)
(96)

Computationally, we set up the problem, where p pop is the real distribution from which we generate the
synthetic data, and instead of x and y we write the vectors as input and output, respectively.

K<-10
size<-1:K
sigma<-c(1,1,1,1,sqrt(2),sqrt(2),sqrt(2),sqrt(2),sqrt(3),sqrt(3))
set.seed(10)
error<-rnorm(10,0,.1)*sigma
input<-runif(10,1,100)
input<-input[order(input)]
p_pop = c(.032, .042, .065, .097, .133, .162, .201, .138, .094, .036) # "real" distribution

beta = c(.4, .4, .4, .4, .7, .7, .7, .7, 1.5, 1.5)
a<-2 # alpha

output<-a*input^beta+error
x_bar<-sum(p_pop*input)
y_bar<-sum(p_pop*output)

Following the usual procedure, we set up the constraints in heq, with the corresponding Jacobian.

heq <- function(x) { # vector

h <- rep(NA, 1)
h[1] <- sum(x) - 1 # zeroth moment constraint: normalization

h[2] <- sum(x*input) - x_bar # first moment constraint: input mean

h[3] <- sum(x*output) - y_bar # first moment constraint: output mean

h
}
heq.jac <- function(x) { # matrix

j <- matrix(NA, 3, length(x))
j[1, ] <- rep(1,K) # partial derivatives of the normalization constraint wrt the p's

j[2, ] <- input
j[3, ] <- output
j

}
results_0<-auglag(rep(1/K,K),entropy,entropy_gr,heq=heq,heq.jac=heq.jac,hin=hin,hin.jac=hin.jac)
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11.1.2 With priors

If we have a prior distribution q that is not uniform, then instead of maximizing the entropy of p, we minimize
the Kullback-Leibler divergence from the prior distribution q to our predicted, “posterior” distribution p. If
we have a prior distribution q that is uniform, we are back to maximizing entropy:

DKL(p||q) =
X

k

pk log
pk
qk

=
X

k

pk log
pk
1/N

=
X

k

pk log(pkN) =
X

k

log pk

| {z }
�H(p)

+ logN
X

k

pk

| {z }
1

DKL(p||q) == logN �H(p)

logN is the entropy of the uniform distribution, which is a constant that will vanish in the constrained-
optimization problem.

The problem of constrained-optimization for the Uniformia example is now the same as before, but now
instead of maximizing entropy we minimize the KL-divergence. Hence, we re-write the objective function
and its gradient, while setting up the same priors than Golan [Golan, 2018, pp.206-207]:

priors<-c(.0682,0.0909,rep(0.1136,6),0.0909,0.0682)
KL<-function(x){sum(x*log(x/priors))}
KL_gr<-function(x) {log(x/priors)+priors}
results_1<-auglag(rep(1/K,K),KL,KL_gr,heq=heq,heq.jac=heq.jac,hin=hin,hin.jac=hin.jac)

We plot the results:

plot(NA,ylim=c(0,max(p_pop)),xlim=c(1,10),xlab='Firm Size',ylab='Probability')
grid()
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lines(p_pop,lwd=2)
lines(results_0$par,col='tomato',lwd=2)
lines(results_1$par,col='steelblue',lwd=2)
lines(priors,col='gray',lwd=2)
legend('topleft',c('real','predicted w/o priors','predicted with priors','priors'),col=c('black','tomato','steelblue','gray'),pch=16,bty='n')
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In order to facilitate the comparison of our predictions, we can also plot the values of the real distribution
p pop vs the predicted distributions with and without priors, and the priors. The numbers next to the priors
refer to the firm size:

plot(NA,xlim=c(0,max(p_pop)),ylim=c(0,max(p_pop)),xlab='real (p_pop)',ylab='predicted (p)')
grid()
for(k in 1:K){lines(rep(p_pop[k],3),c(results_0$par[k],results_1$par[k],priors[k]),col=gray(0.5))}
points(p_pop,results_0$par,col='tomato',pch=16)
points(p_pop,results_1$par,col='steelblue',pch=16)
points(p_pop,priors,col='gray',pch=16)
abline(a=0,b=1,lty=2)
legend('topleft',c('w/o priors','with priors','priors'),col=c('tomato','steelblue','gray'),pch=16,bty='n')
text(p_pop,priors,labels=1:K,pos=2)
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Finally, using our function KL, we can also compute the two KL divergences with respect to the prior
distribution for both predicted distributions. As expected, the KL-divergence for the predicted distribution
with priors is smaller than without priors.

KL(results_0$par)

## [1] 0.0787377

KL(results_1$par)

## [1] 0.07386316

12 Markov Processes

In many sciences, dynamical systems, such as Markov processes, play a central role in the description of
reality. The basic idea is to represent the state of a system at a particular time t in terms of measurements,
i.e. di↵erent variables or dimensions, which is called the state vector x(t). The space in which the state
vector is defined (usually a finite-dimensional Euclidean space) is called the state space. The basic idea
of a dynamical system is that certain laws govern the evolution of the state vector. Hence, we can define a
dynamical system as a state space S, a set of times T , and a rule R that regulates the temporal evolution of
the system:

R : S ⇥ T ! S (97)

The dynamical system is a Markov process if and only if the time rule R is probabilistic (i.e. stochastic)
and time T and state space S are discrete1. In particular, the fundamental Markov property is its mem-

1For dynamical systems in general, state space S and time T can also be continuous and evolution rule R can be deterministic,
for instance in the case of sets of ordinary di↵erential equations.
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Table 1: Markov Transition Matrix showing conditional probabilities pij = p(yt ! yt+1), with K = 3
states

orylessness, since the current state of the system S is entirely determined by its previous state – albeit
following probability transitions from one state to the other in a stochastic, not deterministic way. Golan
addresses Markov processes in pages 250–254 and pages 319–324.

If state space S can takeK states, we can characterize the Markov process by aK⇥K matrix of transition
probabilities pi!j = p(j|i) = pij where i = t and j = t+ 1, two successive instants in discrete time T , that
is, p(yt ! yt+1

) (see table 1). Let Y be a random variable that can take K mutually exclusive values, i.e.
the possible states of the system y

1

, y
2

, ..., yK of state space S. We can thus write the Markov process as:

P (yt+1

|yt, yt�1

, yt�2

) = p(yt+1

|yt) (98)

where the joint probability of Y is

p(y
1

, ..., yt) = p(y
1

)p(y
2

|y
1

)p(y
2

|y
3

)...p(yt|yt�1

)

Now in Golan’s maximum-entropy framework, consider inferring the transition probabilities of a system
from time t to time t+1 characterized by a first-order Markov process [Golan, 2018, pp.250-256]. Let qj,t be
the frequency of individual states j in time period t so that

P
j qj,t = 1. Using transition probability from i

to j pij , we can thus write

qj,t+1

=
X

i

pijqj,t

where
P

j pij = 1 and qj,t and qj,t+1

are the observed frequencies of each state at each one of the time
periods t and t+ 1, for t = 1, ..., T .

Is it realistic to assume, though, that the system is already in a stationary equilibrium? In fact, it is
more realistic to assume that the system is still away from its stationary equilibrium. It is also natural to
acknowledge that the transition matrix P , which we want to infer, is just an approximate theory about an
evolving process. Consequently, we write

qj,t+1

=
X

i

pijqj,t + ✏j,t =
X

i

pijqj,t +
X

s

wjs,tvs,t (99)

where, as before, noise Vt is a discrete random variable of dimension S � 2 for each period t, with symmetric-
about-zero support space, and wjs,t are the weights for that support, i.e ✏j,t =

P
s wjs,tvs,t. In the particular

case of Markov processes, errors ✏j,t, and thus the support space Vt, are naturally bounded within the interval
[�1,+1].

The info-metrics inferential procedure for Markov processes is

minimize
P

DKL(p, w||p0, w0) =
X

ij

pij log
pij
p0ij

+
X

jst

wjs,t log
wjs,t

w0

js,t

subject to qj,t+1

=
X

i

pijqi,t + ✏j,t =
X

i

pijqj,t +
X

s

wjs,tvs,t; t = 1, ..., T � 1; j = 1, ...,K

X

j

pij = 1; i = 1, ...,K

X

s

wjs,t = 1; t = 1, ..., T � 1; j = 1, ...,K

(100)
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where p0ij and w0

js,t are the set of prior probabilities for the transition probabilities and the noise weights,
respectively. Unless we have more precise information, we take these noise weights to be uniform over a
mean zero support, i.e. w0

js,t = 1/S for all t and j.
The general solution for the transition probability matrix is

p⇤ij =
p0ij exp

⇣PT�1

t=1

�⇤
j,tqi,t

⌘

P
j p

0

ij exp
⇣PT�1

t=1

�⇤
j,tqi,t

⌘ =
p0ij exp

⇣PT�1

t=1

�⇤
j,tqi,t

⌘

⌦i(�⇤)
(101)

and for the noise weights

w⇤
js,t =

w0

js,t exp
�
�⇤
j,tvt,s

�
P

s w
0

js,t exp
�
�⇤
j,tvt,s

� =
w0

js,t exp
�
�⇤
j,tvt,s

�

 j,t(�⇤
j,t)

(102)

The inferred probabilities p are the stationary transition probabilities that are as close as possible to the
theoretical ones, even though the system may still be slowly evolving and the information may be noisy. We
can now evaluate the impact of each state frequency qi,t2 on transition probability pij :

@p⇤ij
@qi,t

= p⇤ij

0

@�⇤
j,t �

X

j

p⇤ij�
⇤
j

1

A (103)

In Golan, the possibility of having more additional information in the form of X over space H that is external
to the transition is considered, which may be state-specific or inclusive of all states.

# Markov Chains

M<-t(matrix(c(.2,.4,.4,.1,.3,.6,.5,.1,.4),nrow=3,ncol=3))
write_matex(M) # write_matex is an auxiliary function to print matrices in Latex

2

4
0.2 0.4 0.4
0.1 0.3 0.6
0.5 0.1 0.4

3

5

# M<-matrix(c(0.9,.15,.25,.075,.8,.25,.025,.05,.5),nrow=3,ncol=3)

eigen(t(M))$values

[1] 1.00+0.0000000i -0.05+0.2397916i -0.05-0.2397916i

write_matex(round(eigen(t(M))$vectors,2))

2

4
�0.52 + 0i 0.67 + 0i 0.67 + 0i
�0.4 + 0i �0.42� 0.4i �0.42 + 0.4i
�0.75 + 0i �0.25 + 0.4i �0.25� 0.4i

3

5

v<-Re(eigen(t(M))$vectors[,1])
v

[1] -0.5204834 -0.4048205 -0.7518094

2In Golan, the partial derivative has qj,t, but it may be a typo (we write i instead?).
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ergodic.M<-v/sum(v)
ergodic.M

[1] 0.3103448 0.2413793 0.4482759

# Function Markov Evolution

markov<-new('markovchain',states=as.character(c(1,2,3)),byrow=T,transitionMatrix=M,name='markov.test')
evo.markov<-function(init,time) {cbind(init,sapply(1:time,function(t){init*markov^t}))}

# Function Plot Markov Evolution

plot.markov<-function(run)
{
plot(NA,ylim=c(0,1),xlim=c(0,ncol(run)),xlab='iteration',ylab='p(state)',main=paste0('init = (',paste0(round(run[1:2,1],2),sep=',',collapse=''),round(run[3,1],2),')'))
grid(lwd=1.5)
for(i in 1:nrow(run)) {lines(1:ncol(run),run[i,],lwd=2,col=rainbow_hcl(nrow(run))[i])}
abline(h=ergodic.M,col=rainbow_hcl(nrow(run)),lty=2)
legend('topleft',as.character(c(1,2,3)),col=rainbow_hcl(3),pch=16,bty='n')

}

par(mfrow=c(2,3),mar=c(1.85,1.95,1.1,0.35))
for(i in 1:6)
{
freq.0<-runif(3,0,3)
plot.markov(evo.markov(freq.0/sum(freq.0),15))

}
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par(mfrow=c(1,1),mar=c(5.1, 4.1, 4.1, 2.1))

12.1 Example: Business Cycle

Now let’s produce a time series of GDP growth by constructing an economy xt that grows at rate r and with
carrying capacity of the environment K following deterministic logistic growth ,

xt+1

= rxt

⇣
1� xt

K

⌘
(104)

A simple model on these lines of the Ricardian growth model can be found in Bhaduri and Harris [Bhaduri
and Harris, 1987]. Since x can be rescaled by K so that it goes from 0 to 1 instead that from 0 to K, we
have the logistic equation

xt+1

= rxt (1� xt) (105)

This deterministic dynamical system in discrete time, but in continuous space, is well-known in epidemiology
in order to understand the spread over time of infectious diseases, for instance the coronavirus. In this case,
the carrying capacity K is the population susceptible to infection or final epidemic size.

logistic<-function(init,par,timelength)
{
x<-c()
x[1]<-init
for(t in 1:timelength) {x[t+1]<-par*x[t]*(1-x[t])}
return(x)

}

par(mfrow=c(1,1),mar=c(5.1, 4.1, 4.1, 2.1))
plot(logistic(init=0.7,par=3,timelength=30),type='l',lwd=2,col='tomato',xlab='time',ylab='population')
grid(lty=2)
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Logistic growth exhibits deterministic chaos within the interval of the parameter r between 3.56 and 4.
Deterministic chaos consists of very irregular, aperiodic oscillations over continuous space that cannot be
predicted in the long run. Since Markov processes operate on discrete space, we divide the economic regimes
of the business cycle in three discrete states, e.g. boom (for x > b), bust (for x < a), and normal (a < x < b)
or boom (for x > hxi) and bust (for x < hxi):

x.1<-logistic(init=0.6,par=3.7,timelength=200)
x.2<-logistic(init=0.7,par=3.8,timelength=200)

a<-0.5
b<-0.8
y<-z<-c()
y[x.2<mean(x.2)]<-'bust'
y[x.2>mean(x.2)]<-'boom'
z[x.1<a]<-'bust' # bust

z[x.1>b]<-'boom' # boom

z[x.1>a & x.1<b]<-'normal' # normal

par(mfrow=c(1,1),mar=c(5.1, 4.1, 4.1, 2.1))
plot(x.2,ylim=c(0,1),type='l',lwd=2,col=alpha('tomato',0.5),xlab='time',ylab='population')
grid(lty=2)
lines(x.2,col=alpha('tomato',0.75),lwd=2)
lines(x.1,col=alpha('steelblue',0.75),lwd=2)
legend('bottomright',c('1','2'),col=c('steelblue','tomato'),pch=16,bty='n')
abline(h=c(mean(x.2),a,b),lty=c(3,2,2),lwd=1.25)
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Table 2: Transition Matrix for y (trajectory 2)

boom bust

boom 0.233 0.767
bust 0.814 0.186
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# Function Compute Transition Probabilities from Observed Evolution

trans.M<-function(y0)
{
states<-unique(y0)
t.M<-matrix(0,ncol=length(states),nrow=length(states),dimnames=list(states,states))
for(i in states)
{
trp<-table(y0[which(y0==i)+1])/sum(table(y0[which(y0==i)+1]))
t.M[i,names(trp)]<-trp

}
t.M

}
kable(round(trans.M(y),3),booktabs=T,caption="\\bf \\small Transition Matrix for y (trajectory 2) \\label{tab:p.M.1}",escape=FALSE) %>% row_spec(0,bold=T) %>% column_spec(1,bold=T) %>% kable_styling()

rowSums(trans.M(y))

boom bust 1 1
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Table 3: Transition Matrix for z (trajectory 1)

normal boom bust

normal 0.643 0.357 0.000
boom 0.241 0.000 0.759
bust 0.477 0.523 0.000

kable(round(trans.M(z),3),booktabs=T,caption="\\bf \\small Transition Matrix for z (trajectory 1) \\label{tab:p.M.2}",escape=FALSE) %>% row_spec(0,bold=T) %>% column_spec(1,bold=T) %>% kable_styling()

rowSums(trans.M(z))

normal boom bust 1 1 1

# Function Simulate a Markov Trajectory

trial.run<-function(t.M,y0)
{
y.run<-c()
y.run[1]<-y0[1]
for(t in 1:(length(y)-1))
{
y.run[t+1]<-sample(colnames(t.M),size=1,prob=t.M[y.run[t],])

}
y.run

}

run.y<-trial.run(trans.M(y),y)
table(run.y==y)

FALSE TRUE 94 107

v<-Re(eigen(t(trans.M(y)))$vectors[,1])
v/sum(v) # Ergodic Distribution

[1] 0.515 0.485

run.z<-trial.run(trans.M(z),z)
table(run.z==z)

FALSE TRUE 115 86

v<-Re(eigen(t(trans.M(z)))$vectors[,1])
v/sum(v) # Ergodic Distribution

[1] 0.49 0.29 0.22

12.2 Example: US Employment

First we download US employment data from the Bureau of Labor Statistics: labor force, employed, unem-
ployed, and not in the labor force.

55



Table 4: First 6 Observations of emp data frame

employed unemployed not.labor

727 0.609 0.026 0.365
728 0.603 0.025 0.373
729 0.605 0.022 0.373
730 0.607 0.022 0.371
731 0.607 0.022 0.371

732 0.604 0.023 0.372

labor.force<-read.csv('US_labor_data.csv')
employed<-read.csv('employed_data.csv')
unemployed<-read.csv('unemployed_data.csv')
not.labor<-read.csv('not_labor_force_data.csv')
emp.data<-data.frame(year=labor.force$Year,period=labor.force$Period,labor.force=labor.force$Value,employed=employed$Value,unemployed=unemployed$Value)
emp.data<-data.frame(emp.data[emp.data$year>1974,],not.labor=not.labor$Value)
emp<-emp.data[,c('employed','unemployed','not.labor')]/emp.data$labor.force
plot(NA,xlim=c(1,nrow(emp)),ylim=c(0,1),xlab='time',ylab='%')
for(i in 1:3){lines(1:nrow(emp),emp[,i],col=rainbow_hcl(3)[i],lwd=2)}
legend('topleft',c('employed','unemployed','not.labor'),pch=16,col=rainbow_hcl(3),bty='n')
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emp<-emp[(nrow(emp)-20):nrow(emp),] # we take only the last 20 time periods

kable(round(head(emp),3),booktabs=T,caption="\\bf \\small First 6 Observations of emp data frame \\label{tab:emp}",escape=FALSE) %>% row_spec(0,bold=T) %>% kable_styling()
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Once again, the info-metrics inferential procedure for Markov processes is

minimize
P

DKL(p, w||p0, w0) =
X

ij

pij log
pij
p0ij

+
X

jst

wjs,t log
wjs,t

w0

js,t

subject to qj,t+1

=
X

i

pijqi,t + ✏j,t =
X

i

pijqj,t +
X

s

wjs,tvs,t; t = 1, ..., T � 1; j = 1, ...,K

X

j

pij = 1; i = 1, ...,K

X

s

wjs,t = 1; t = 1, ..., T � 1; j = 1, ...,K

(106)

The transition matrix pij is K ⇥K where K is the number of states of the phase space. For our algorithm
setup, the objective function that we minimize is the sum of the KL-divergences of K2 transition probabilities
p and 3K(T � 1) noise weights wjs,t where s = 1, 2, 3 is the index for the noise support V . Hence our vector
x will have length K2 + 3K(T � 1).

We will have 2K(T�1)+K = 2KT�K constraints in total: K(T�1) constraints that are obtained from
qj,t+1

(i.e. K constraints for each time period t), K constraints that normalize the row sum of transition
probabilities pij , and K(T � 1) constraints that normalize the noise weights (K constraints for each time
period t).

In our example, K = 3, S = 3, and T = 21, so that x will have length 32 + 3 ⇤ 3 ⇤ 20 = 189: the first K2

values are for the transition probabilities and the remaining S ⇤K ⇤ (T � 1) for the noise weights. For each
time period t, we have K = 3 frequencies q

1,t, q2,t, and q
3,t. For each of these K = 3 frequencies, we have

S = 3 noise weights, so K ⇥ S = 9 noise weights for each time period.
The gradient of the objective function is a vector with the partial derivatives of the KL-divergence with

respect to each of the probabilities p and w (which are the same function...).

p0<-rep(1/9,9)
v<-c(-1,0,1) # same support space for all T-1 observations

w0<-rep(1/3,3)
init<-c(p0,rep(1/3,3*3*(nrow(emp)-1)))

KL1<-function(x){sum(x[1:9]*log(x[1:9]/p0))+sum(x[10:length(x)]*log(x[10:length(x)]/w0))}
KL_gr1<-function(x)
{
trp<-c(log(x[1:9]/p0)+p0,log(x[10:length(x)]/w0)+w0)
trp[is.na(trp)]<-0
trp

}

The heq vector includes all the constraints and hence it will have a length of 2KT�K = 2⇤3⇤21�3 = 123.
The first K = 3 constraints will be for each row of the transition matrix (row normalization), then we
assign K(T � 1) = 3 ⇤ 20 = 60 normalization constraints for the noise weights (positions K + 1 = 4 to
K(T � 1) + K = 63 in the x vector), and finally K(T � 1) more constraints for each of the 3 observed
frequencies per time period (positions K(T � 1) +K + 1 = 64)

heq <- function(x)
{
h <- rep(NA, 1)

# 3 constraints for each transition row

for(i in 1:3){h[i] <- sum(x[(3*i-2):(3*i)]) - 1}
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pM<-t(matrix(x[1:9],ncol=3,nrow=3)) # auxiliary transition matrix

for(t in 1:(nrow(emp)-1))
{
# selects the 9 weight positions in the x vector corresponding to period t

cnt<-(9*(t-1)+1+9):(9*t+9)

# 3 constraints for each time period for the noise weights

h[3*t+1]<-sum(x[cnt[1:3]]) - 1
h[3*t+2]<-sum(x[cnt[4:6]]) - 1
h[3*t+3]<-sum(x[cnt[7:9]]) - 1

# 1 constraint for each of the 3 observed frequencies per time period

h[63+1+3*(t-1)]<-sum(pM[,1]*emp[t,])+sum(x[cnt[1:3]]*v)-emp[t+1,1] # q_{1,t+1}
h[63+2+3*(t-1)]<-sum(pM[,2]*emp[t,])+sum(x[cnt[4:6]]*v)-emp[t+1,2] # q_{2,t+1}
h[63+3+3*(t-1)]<-sum(pM[,3]*emp[t,])+sum(x[cnt[7:9]]*v)-emp[t+1,3] # q_{3,t+1}

}
h

}
heq.jac <- function(x)
{
j <- matrix(0, 123, length(x)) # 123 rows for the constraints

# derivative of first 3 constraints wrt the p's is 1

j[1,1:3]<-1
j[2,4:6]<-1
j[3,7:9]<-1

for(t in 1:(nrow(emp)-1))
{
cnt<-(9*(t-1)+1+9):(9*t+9)

# 3 constraints for each time period for the noise weights

j[3*t+1, cnt[1:3]]<- 1
j[3*t+2, cnt[4:6]]<- 1
j[3*t+3, cnt[7:9]]<- 1

# 1 constraint for each of the 3 observed frequencies per time period

# derivative wrt the p columns (j index) equals observed frequencies

j[63+1+3*(t-1), c(1,4,7)]<-as.numeric(emp[t,]) # q_{1,t+1}
j[63+2+3*(t-1), c(2,5,8)]<-as.numeric(emp[t,]) # q_{2,t+1}
j[63+3+3*(t-1), c(3,6,9)]<-as.numeric(emp[t,]) # q_{3,t+1}

# derivative of q_{j,t+1} constraint wrt noise weights is the noise support v

j[63+1+3*(t-1), cnt[1:3]]<-v # q_{1,t+1}
j[63+2+3*(t-1), cnt[4:6]]<-v # q_{2,t+1}
j[63+3+3*(t-1), cnt[7:9]]<-v # q_{3,t+1}

}
j

}
hin <- function(x) { # vector
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Table 5: Transition Matrix for US Employment

employed unemployed not.labor

employed 0.5935 0.0649 0.3416
unemployed 0.3452 0.3168 0.3380
not.labor 0.5073 0.1300 0.3627

h <- x # vector of probabilities must be nonnegative in all entries

h
}
hin.jac <- function(x) { # matrix

diag(length(x)) # partial derivatives of hin wrt the p's

}

res.markov<-auglag(init,KL1,KL_gr1,heq=heq,heq.jac=heq.jac,hin=hin,hin.jac=hin.jac)

The transition matrix that we obtain is:

res.mat<-round(t(matrix(res.markov$par[1:9],ncol=3,nrow=3)),4)
colnames(res.mat)<-rownames(res.mat)<-c('employed','unemployed','not.labor')
kable(res.mat,booktabs=T,caption="\\bf \\small Transition Matrix for US Employment \\label{tab:p.M.3}",escape=FALSE) %>% row_spec(0,bold=T) %>% column_spec(1,bold=T) %>% kable_styling()

12.3 Example: Input-Output Case

In a 1995 contribution, Leontief and Brody present standard input-output relationships that are comple-
mented by monetary stock-flow data [Leontief and Brody, 1993]. The flow of money is described as a Markov
chain. Its ergodic state is equivalent to the economic equilibrium. The definition of the latter requires thus
neither labour-theoretic nor marginalist assumptions. The Fisher equation for the velocity of money cir-
culation can be expressed in this input-output context. The average velocity and its dispersion are then
determined. The theorems are illustrated on a 5⇥ 5 sector Hungarian matrix.

In a 2000 contribution, Leontief’s disciple, András Bródy, presents a model of the circulation of money
as a Markov chain and a special multiplier is set up in order to describe the transitory propagation of a
monetary injection into a given economy [Brody, 2000].

A given unit of money, after staying in state i (i.e. production sector i) for an (probabilistic) interval
⌧ik turns suddenly into state k with probability aik. Let’s first consider that all intervals ⌧jk are of unit
magnitude. A = {ajk} is a stochastic matrix of transition probabilities that can also be considered as the
input-output coe�cients of a closed Leontief economy.

If the system is self-replacing, then this matrix will have a maximal positive eigenvalue 1 on account
of x = Ax. Thus, the Markov process generated by A is ergodic, i.e. the process converges to a limiting
distribution irrespective of its initial state.

Transition will go either along the consecutive setps of the discrete chain

mt+1

= Amt (107)

or in continuous form
dm

dt
= (A� I)m (108)

where mk is the vector of the money stock in each state or production sector at time t. The path of the
discrete system will be traced by successively multiplying the initial vector m

0

by matrix A. After a while,
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we arrive to the ergodic matrix A⇤ – Brody argues A⇤ has rank 1 as a single dyad with the equilibrium price
and output vector.

Let’s now inject money into the economy, which will leave an irreversible imprint on the system with a
characteristic impact and time profile – which is equivalent to constructing a monetary multiplier. We have
to consider only the non-equilibrium part of the injection and its propagation. The non-equilibrium part,
deviation D, will be:

D = A�A⇤ (109)

which propagates by a process in which it will be multiplied, in every step, by the matrix A, i.e. in general
Dt will be the tth power of matrix D. We can sum up all the non-equilibrium impulses generated by the
injection of new money, which will be equal to the Leontief-inverse of matrix D:

⌃ = I +D +D2 + ...+Dt = (I �D)�1 (110)

This series will certainly converge, because the matrix D possesses all lesser eigenvalues of A (expect 1).
This series can show the sectoral benefits. All column sums of the powers of D equal zero, thus there will
be a clear separation of sectors of production that are winners and losers in the money injection.

In the more general case with di↵erences in turnovers ⌧ik, let’s consider the matrixB = {aik⌧ik} expressing
the density of monetary flows from production sector i to k. The column sums of this matrix are the branch-
specific average turnover times. The diagonal matrix T expresses the density of the outflow of payments
originating in the respective sectors. Column sums of A are of unit magnitude. The summation yields the
average of the delay-times. The elements of T are therefore

Ti =
X

k

aik⌧ik (111)

The di↵erential equation for the circulation processes may be now set up as

dm

dt
= (B � T )m (112)

which shows that the change in money stocks consists of the payments received Bm minus payments made
Tm. In discrete time,

mt+1

= (I +B � T )mt (113)

An empirical illustration is provided for a small model of the Hungarian economy:

2

66664

0.21 0.18 0.11 0.15 0.05
0.2 0.24 0.51 0.17 0.37
0.14 0.27 0.12 0.25 0.15
0.22 0.12 0.09 0 0.33
0.23 0.19 0.17 0.43 0.1

3

77775

and turnover times ⌧ = (0.1, 0.05, 0.07, 0.4, 0.8) leading to the following monetary multiplier M = (I �
D)�1 � I: 2

66664

9.51 �1.02 �1.23 0.23 �1.41
�7.82 7.19 �5.36 �4.9 �6.12
�2.13 �2.85 9.48 0.28 �2.36
0.36 �0.25 �0.23 1.56 0.41
0.08 �3.07 �2.66 2.83 9.48

3

77775

Injecting money into the 5th sector (government) has only a small spillover e↵ect on the first one (house-
holds) and is detrimental to everything else apart from government. What has been demonstrated here is
that the classical multiplier can be broken down into a detailed picture that describes the processes both in
space (among sectors of production) and through time (if solving the equation for the time path).
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ADV MATH METHODS FOR MODELING

Lab Notes on Info-Metrics

Oriol Vallès Codina

May 6, 2020

1 Parameter Estimation for a Double-Exponential Distribution

In the following example, we want to estimate the decay parameter b of a Laplace (or double-exponential)
distribution (which we derived in section ??):

p(x) =
1

2b
e−
|x−µ|
b (1)

The Laplace distribution is the observed distribution for firm profitability and appears often in many social
and physical processes. Remember that this distribution is generated by a single constraint (in addition to
normalization):

〈|x− µ|〉 = b (2)

We can also write the Laplace distribution in a piece-wise form that emphasizes its double-exponential
character:

p(x) =

{
aeλ(x−µ) if x < µ

ae−λ(x−µ) if x > µ
(3)

The first moment of the Laplace distribution, the average µ, also indicates its maximum value around which
the distribution is centered, and thus is very easy to find. Without loss of generality and for convenience, we
will take µ = 0. We can think that the values we record in our dataset are just x−µ, so that the distribution
is centered around zero.

We thus make µ = 0 and take the natural logarithm of (3):

ln p(x) =

{
ln a+ λx if x < 0

ln a− λx if x > 0
(4)

We will try to estimate both of these parameters from a sample distribution we generate randomly by
applying the maximum entropy problem for linear regressions. Our parameters will be rate λ = 10 and scale
a = 5.

We first generate our values following a double-exponential distribution always distinguishing between
the positive and the negative branches. Then we check its linearity in the log-linear plot and apply two
standard linear fits there.

library(broom)

library(dplyr)

##

## Attaching package: ’dplyr’

1



## The following objects are masked from ’package:stats’:

##

## filter, lag

## The following objects are masked from ’package:base’:

##

## intersect, setdiff, setequal, union

library(xtable)

library(kableExtra)

##

## Attaching package: ’kableExtra’

## The following object is masked from ’package:dplyr’:

##

## group rows

x<-(rexp(500,rate=10)-rexp(500,rate=10)) # scale parameter should be 10

x_<-density(x,bw=0.01,n=150)$x

y_<-density(x,bw=0.01,n=150)$y

plot(x_,y_,main='Sample Laplace Distribution',col='white')

grid(lwd=1.5)

lines(x_,y_,lwd=2)

abline(v=mean(x),lty=2)

lines(x_,5*exp(-abs(10*x_)),col='tomato',lwd=2) # in fact scale=5 is a better fit...
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plot(x_,log(y_),type='l',lwd=2,main='Log-Linear Plot (Tent Shape)')

grid(lwd=1.5)
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y.li<-log(5)-abs(10*x_)

lines(x_,y.li,col='tomato',lwd=2)

abline(v=mean(x),lty=2)
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)

fit.positive<-lm(y_[x_>0] ~ x_[x_>0])

fit.negative<-lm(y_[x_<0] ~ x_[x_<0])

print(xtable(fit.positive),type='latex')

Estimate Std. Error t value Pr(>|t|)
(Intercept) 2.4633 0.1401 17.58 0.0000
x [x > 0] -5.6374 0.4223 -13.35 0.0000

print(xtable(fit.negative),type='latex')

Estimate Std. Error t value Pr(>|t|)
(Intercept) 2.7719 0.1609 17.22 0.0000
x [x < 0] 6.7324 0.5182 12.99 0.0000

Now we apply the maximum entropy problem for linear regressions in both branches.

# POSITIVE BRANCH

library(alabama)
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## Loading required package: numDeriv

x0<-x_[x_>mean(x)]

y0<-log(y_[x_>mean(x)])

v<-c(-5*sd(y0),-2.5*sd(y0),0,2.5*sd(y0),5*sd(y0))

z<-c(-100,-50,0,50,100,-100,-50,0,50,100)

b0<-1:(0.5*length(z)) # support space interval for beta0, former example was 1:3

b1<-(0.5*length(z)+1):length(z) # support space interval for beta1, former example was 4:6

entropy<-function(x)

{
p<-x[x!=0]

sum(p*log(p))

}
entropy_gr<-function(x) {ifelse(x==0,0,log(x)+1)} # a vector of partial derivatives wrt the p's

heq <- function(x)

{
h <- rep(NA, 1)

h[1] <- sum(x[b0]) - 1

h[2] <- sum(x[b1]) - 1

for(i in 1:length(x0)) # 2 equality constraints for each obs in the same for loop

{
cnt<-(length(v)*(i-1)+1+length(z)):(length(v)*i+length(z))

h[i+2] <- sum(x[cnt]) - 1

h[i+length(x0)+2]<-sum(x[b0]*z[b0])+sum(x[b1]*z[b1]*x0[i])+sum(x[cnt]*v) - y0[i]

}
h

}
heq.jac <- function(x)

{
j <- matrix(0, 2*length(x0)+2, length(x)) # "default" value for j is 0, not NA

j[1,b0] <- 1

j[2,b1] <- 1

for(i in 1:length(x0)) # 2 equality constraints for each obs in the same for loop

{
cnt<-(length(v)*(i-1)+1+length(z)):(length(v)*i+length(z))

j[i+2,(length(v)*(i-1)+1+length(z)):(length(v)*i+length(z))]<- 1

j[i+length(x0)+2,b0] <- z[b0]

j[i+length(x0)+2,b1] <- x0[i]*z[b1]

j[i+length(x0)+2,(length(v)*(i-1)+1+length(z)):(length(v)*i+length(z))]<-v

}
j

}

hin <- function(x) { # vector

h <- x # vector of probabilities must be nonnegative in all entries

h

}
hin.jac <- function(x) { # matrix

diag(length(x)) # partial derivatives of hin wrt the p's

}
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init<-rep(1/length(v),length(z)+length(v)*length(x0))

res.positive<-auglag(init,entropy,entropy_gr,heq=heq,heq.jac=heq.jac)

# NEGATIVE BRANCH

x0<-x_[x_<mean(x)]

y0<-log(y_[x_<mean(x)])

res.negative<-auglag(init,entropy,entropy_gr,heq=heq,heq.jac=heq.jac)

beta0.pos<-sum(res.positive$par[b0]*z[b0])

beta1.pos<-sum(res.positive$par[b1]*z[b1])

beta0.neg<-sum(res.negative$par[b0]*z[b0])

beta1.neg<-sum(res.negative$par[b1]*z[b1])

library(ggplot2)

value<-c(res.positive$par[c(b0,b1)],res.negative$par[c(b0,b1)])

regressor<-c(rep('intercept log(a) +',0.5*length(z)),rep('slope lambda +',0.5*length(z)),rep('intercept log(a) -',0.5*length(z)),rep('slope lambda -',0.5*length(z)))

support<-rep(paste0('z[',1:(0.5*length(z)),']'),4)

ggplot(data.frame(support,regressor,value), aes(fill=regressor,x=support,y=value)) + geom_bar(position="dodge", stat="identity") + labs(title='Distributions for the Regressors') + scale_fill_brewer(palette="Reds")
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Distributions for the Regressors

res.laplace<-data.frame(parameters=c('a(+)','a(-)','lambda(+)','lambda(-)'),maxent=c(exp(beta0.pos),exp(beta0.neg),beta1.pos,beta1.neg),standard=c(exp(fit.positive$coefficients[1]),exp(fit.negative$coefficients[1]),fit.positive$coefficients[2],fit.negative$coefficients[2]))

kable(res.laplace,booktabs=T) %>% row_spec(0,bold=T)
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parameters maxent standard

a(+) 7.600627 11.743040
a(-) 5.642577 15.989444
lambda(+) -13.687969 -5.637364
lambda(-) 10.735519 6.732429

# Visualization

plot(x_,log(y_),type='l',lwd=2,main='Log-Linear Plot (Tent Shape)')

grid(lwd=1.5)

y.li<-log(5)-abs(10*x_)

lines(x_,y.li,col='gray',lwd=2)

abline(fit.positive,col='tomato',lwd=2,lty=2)

abline(fit.negative,col='tomato',lwd=2,lty=2)

abline(beta0.pos,beta1.pos,col='steelblue',lwd=2,lty=2)

abline(beta0.neg,beta1.neg,col='steelblue',lwd=2,lty=2)

abline(v=mean(x),lty=2)

legend('bottomleft',c('real','standard fit','maxent fit'),col=c('gray','tomato','steelblue'),pch=16,bty='n')
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plot(x_,y_,type='l',lwd=2,main='Laplace Distribution')

grid(lwd=1.5)

abline(v=mean(x),lty=2)

lines(x_,5*exp(-abs(10*x_)),col='tomato',lwd=2) # in fact scale=5 is a better fit...

lines(x_[x_>mean(x)],exp(beta0.pos)*exp(beta1.pos*x_[x_>mean(x)]),col='steelblue',lwd=2,lty=2)

lines(x_[x_<mean(x)],exp(beta0.neg)*exp(beta1.neg*x_[x_<mean(x)]),col='steelblue',lwd=2,lty=2)

legend('topleft',c('standard fit','maxent fit'),col=c('tomato','steelblue'),pch=16,bty='n')
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1 Construction of a Joint Distribution: Race, Gender, and Income

library(kableExtra)

library(xtable)

dat<-as.data.frame(readRDS('IncomeDistr.RDS'))

kable(head(dat))

ID HH gender Age Education Married Kids Labor force Race INCOME WAGE SAVING Liquidity Expense Household size Age cat Age cat num Income cat income prob
31 Male 30 some college or Assoc. degree Yes 2 Working white non-Hispanic 121516.4 108352.1 3000 58000 normal 4 less than 35 1 (1.2e+05,1.4e+05] 0.0001581
34 Male 30 some college or Assoc. degree Yes 2 Working white non-Hispanic 114427.9 108352.1 3000 58000 normal 4 less than 35 1 (1e+05,1.2e+05] 0.0001489
51 Male 41 Bachelors degree or higher Yes 1 Working white non-Hispanic 114427.9 114427.9 7600 12000 normal 3 between 35 and 44 2 (1e+05,1.2e+05] 0.0001489
52 Male 41 Bachelors degree or higher Yes 1 Working white non-Hispanic 114427.9 114427.9 7600 12000 normal 3 between 35 and 44 2 (1e+05,1.2e+05] 0.0001489
53 Male 41 Bachelors degree or higher Yes 1 Working white non-Hispanic 114427.9 114427.9 7600 12000 normal 3 between 35 and 44 2 (1e+05,1.2e+05] 0.0001489
54 Male 41 Bachelors degree or higher Yes 1 Working white non-Hispanic 114427.9 114427.9 7600 12000 normal 3 between 35 and 44 2 (1e+05,1.2e+05] 0.0001489

colnames(dat)

## [1] "ID" "HH_gender" "Age" "Education"

## [5] "Married" "Kids" "Labor_force" "Race"

## [9] "INCOME" "WAGE" "SAVING" "Liquidity"

## [13] "Expense" "Household_size" "Age_cat" "Age_cat_num"

## [17] "Income_cat" "income_prob"

# Marginal Probabilities for Discrete Variables

table(dat$HH_gender)/nrow(dat)

##

## Female Male

## 0.2691808 0.7308192

table(dat$Education)/nrow(dat)

##

## no high school diploma/GED high school diploma or GED

## 0.1064153 0.2460988

## some college or Assoc. degree Bachelors degree or higher

## 0.2831599 0.3643260

table(dat$Race)/nrow(dat)
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##

## white non-Hispanic black/African American Hispanic

## 0.69018205 0.15832250 0.10197226

## other

## 0.04952319

# Continuous Variables: Income

bins.income<-density(dat[,'INCOME'],n=21)$x

p.income<-density(dat[,'INCOME'],n=21)$y/sum(density(dat[,'INCOME'],n=21)$y)

-sum(p.income*log(p.income)) # marginal entropy of income

## [1] 2.280992

# Joint Probability for Gender and Income

joint<-data.frame()

for(i in 1:length(bins.income)) # you can also write go between bin 2 and bin 19

{
n.f<-nrow(dat[dat$INCOME>bins.income[i] & dat$INCOME<bins.income[i+1] & dat$HH_gender=='Female',])

n.m<-nrow(dat[dat$INCOME>bins.income[i] & dat$INCOME<bins.income[i+1] & dat$HH_gender=='Male',])

joint[i,'Female']<-n.f

joint[i,'Male']<-n.m

}
joint<-joint/nrow(dat)

kable(joint)

Female Male
0.0000000 0.0000000
0.0539662 0.0493065
0.1115085 0.1547464
0.0532076 0.1303641
0.0174469 0.0846337
0.0063936 0.0565670
0.0109450 0.0769397
0.0047681 0.0403121
0.0018422 0.0245990
0.0032510 0.0407456
0.0006502 0.0126788
0.0011920 0.0163632
0.0005418 0.0079107
0.0005418 0.0092111
0.0002167 0.0053099
0.0001084 0.0040095
0.0014088 0.0088860
0.0009753 0.0065020
0.0002167 0.0017339
0.0000000 0.0000000
0.0000000 0.0000000

sum(joint) # should be 1

## [1] 1
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colSums(joint) # returns marginal prob for gender

## Female Male

## 0.2691808 0.7308192

rowSums(joint) # returns marginal prob for income

## 1 2 3 4 5 6

## 0.000000000 0.103272648 0.266254876 0.183571738 0.102080624 0.062960555

## 7 8 9 10 11 12

## 0.087884699 0.045080191 0.026441266 0.043996532 0.013328999 0.017555267

## 13 14 15 16 17 18

## 0.008452536 0.009752926 0.005526658 0.004117902 0.010294755 0.007477243

## 19 20 21

## 0.001950585 0.000000000 0.000000000

p<-joint[-c(1,20,21),]

plot(p$Male,col='tomato',lwd=2,type='l',ylab='Joint Probability',xlab='Income Bin')

grid()

lines(p$Female,col='steelblue',lwd=2)

legend('topright',c('Male','Female'),pch=16,col=c('tomato','steelblue'))
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# 3-Dimensional Joint Probability for Gender, Race and Income

# dimnames=list(c(1:21),unique(dat£Race),c('Female','Male')))

joint.3<-array(NA,dim=c(length(bins.income),length(unique(dat$Race)),2),dimnames=list(c(1:21),unique(dat$Race),c('Female','Male')))

for(i in 1:length(bins.income))

{
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for(j in unique(dat$Race))

{
n.f<-nrow(dat[dat$INCOME>bins.income[i] & dat$INCOME<bins.income[i+1] & dat$Race==j & dat$HH_gender=='Female',])

n.m<-nrow(dat[dat$INCOME>bins.income[i] & dat$INCOME<bins.income[i+1] & dat$Race==j & dat$HH_gender=='Male',])

joint.3[i,j,'Female']<-n.f

joint.3[i,j,'Male']<-n.m

}
}
sum(joint.3) # total number of observations (ie nrow(dat))

## [1] 9228

joint.3<-joint.3/nrow(dat)

Pointwise mutual information (PMI) is a measure of association used in information theory and statistics.
In contrast to mutual information (MI) which builds upon PMI, it refers to single events, whereas MI refers
to the average of all possible events.

The PMI of a pair of outcomes x and y belonging to discrete random variables X and Y quantifies the
discrepancy between the probability of their coincidence given their joint distribution and their individual
distributions, assuming independence. Mathematically:

pmi(x, y) = log
p(x, y)

p(x)p(y)
= log p(x, y)− log p(x)− log p(y) (1)

pmi(x, y) = log
p(x|y)

p(x)
= log

p(y|x)

p(y)
(2)

The mutual information (MI) of the random variables X and Y is the expected value of the PMI (over all
possible outcomes):

MI(x, y) =
∑
y

∑
x

p(x, y) log
p(x, y)

p(x)p(y)
(3)

# rowSums(joint) returns marginal probability for income

# sum(joint£Female) returns marginal probability for gender female

pmi.f = log(joint$Female/(rowSums(joint)*sum(joint$Female)))

pmi.m = log(joint$Male/(rowSums(joint)*sum(joint$Male)))

plot(NA,xlim=c(1,21),ylim=c(min(c(pmi.f,pmi.m),na.rm=T),max(c(pmi.f,pmi.m),na.rm=T)),xlab='Income Bin',ylab='pmi')

grid(lwd=1.5)

lines(pmi.f,col='steelblue',lwd=2)

lines(pmi.m,col='tomato',lwd=2)

abline(h=0,lty=2)

legend('bottomleft',c('Male','Female'),pch=16,col=c('tomato','steelblue'))
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2 Maximum Entropy for a Distribution with Quantiles as Con-
straints

This should be useful for when we want to find the (continuous) distribution of income f(x) by extracting
the information from the quantiles, as it is often reported in datasets of income inequality. The continuous
support for the income variable is [0,+∞).

If we have the information for i = 1, ..., N quantiles where xi refers to the income threshold and qi refers
to the quantile percentage, we can write the corresponding N constraints of the maxent problem as:∫ ∞

0

[1− θxi
(x)]f(x)dx = qi i = 1, ..., N (4)

where θxi(x) is the Heaviside step function, which is defined in two parts:

θxi
(x) =

{
1 if x > xi

0 if x < xi
(5)

Hence we can write the quantile constraint as:∫ xi

0

f(x)dx = qi i = 1, ..., N (6)

Note that the normalization constraint can also be conceived as the i = 0 constraint, where qi = 1 and
xi = +∞ integrating over the whole continuous support.

The Lagrangian will thus be:

L = −
∫ ∞
0

f(x) log f(x)dx− (λ0 − 1)

(∫ ∞
0

f(x)dx− 1

)
−

N∑
i=1

λi

(∫ xi

0

f(x)dx− qi
)
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Taking the FOC with respect to p(x), we find the general form for p(x):

∂L
∂p(x)

= −1− log p(x)− λ0 + 1− λ1|x− µ| = 0

p(x) = exp (−λ0 − λ1|x− µ|)

Now the two constraints look like: ∫ ∞
−∞

exp (−λ0 − λ1|x− µ|) dx = 1

∫ ∞
−∞
|x− µ| exp (−λ0 − λ1|x− µ|) dx = b

As usual, e−λ0 will be the partition function that provides normalization.
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1 Income Distribution

The grouping property dictates that changing the grouping of the numbers used in an operation without
changing the order does not change the result of that operation. This property applies to both addition and
multiplication, but not to subtraction and division. The grouping property is also of utmost importance
for the entropy function of Boltzmann, Gibbs, and Shannon. The grouping property is instrumental when
analyzing systems where the di erent elementary outcomes can be sorted into mutually exclusive groups.
Given such a system, and our understanding of that system, we start by sorting the individual outcomes
into groups. In that case, identifying a particular outcome means that we first identify the exact group that
outcome resides in.

Consider studying the income distribution of a certain population. Our observed information comes
from tax returns [Golan, 2018, p.45]. So we know the tax bracket of each individual, the range of incomes
(income group) that applies to that tax bracket, and each individual’s relative location within that income
group. There are potentially many individuals located at the same relative location. We call that “type.”
Our income distribution is expressed in terms of probability distribution over brackets and types. In terms
of our notations, P (X = xk|Y = yj)pk|j is the probability of observing an individual with income type k in
tax bracket j. The probability of observing an individual in tax bracket j in the type k is wkj . The average
over all tax brackets is again H(X,Y ) = H(Y ) + H(X|Y ), where Y is the distribution of the tax bracket
groups and X is the distribution of individual types (income levels).

Similarly, we can think of pk|j as the probability of type k’s welfare conditional on her family status,
her income group, her location (rural, urban, suburban), or in general any subgroup of interest. These are
very common problems in the social sciences. A related example from economics is the study of the size
distribution of firms, which we already addressed.

The grouping property is also closely related to hierarchical discrete choice (or nested choice) models:
think of a decision tree where some choices are made in a sequence but some are not.

1.1 Example: Two-Dice Sum

As a simple example [Golan, 2018, p.200], consider tossing two dice, one black and one white. The two
dice are independent of each other. We are interested in the probabilities (and entropy) of the 6 × 6 two-
dice pairs (1, 1), ..., (6, 6), which is the complete sample space. But our prior information comes from the
following groups. Let k enumerate the sum of the two faces, k = 2, 3, .., 12 ; thus there are K = 11 events.
Even when the dice are perfectly tossed and are bias-free we expect that intermediate values of the sum,
say k = 6, 7, or8, are more probable than the extreme values k = 2 or 12. The reasoning is that since there
are 36 possible outcomes (black-white pairs) that map to 11 sums (events), some events correspond to more
than one outcome of the experiment. For example, k = 3 can result under two scenarios: when the (black,
white) faces of the two dice are (1,2) or when they are (2,1). But the event k = 2 can occur only for the
single outcome (1,1) while k = 4 corresponds to three possible outcomes (1,3; 2,2; 3,1). Our expectation
is that the different results of tossing two independent dice (that is, the 36 possible paired outcomes) are
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equally probable. That is, their joint probability is the product of their (individual) marginal probabilities.
But if so, the probabilities pk that the sum of the two faces is k cannot be equal for all values of k. Rather,
even when no constraining information is available, we expect that pk = nk∑

k nk
where nk is the number of

events in which the event k can be realized.

entropy<-function(x)

{
p<-x[x!=0]

sum(p*log(p))

}
entropy_gr<-function(x) {ifelse(x==0,0,log(x)+1)} # a vector of partial derivatives wrt the p's

As in our analytical derivation, we define the values of the 3 events, xj = j for j = 1, 2, 3 in the vector f :

f<-c(1,2,3)

In order to introduce the constraints for auglag, we need a vector for the equality constraints heq (so
that heqj = 0 for all j), a vector for the inequality constraints hin (so that hinj > 0 for all j), and their
corresponding Jacobian matrices (partial derivatives) of size N ×N ′, where number of rows N is the number
of constraints and number of columns N ′ is the support space (number of events) of probability distribution
pj :

heq <- function(x) { # vector

h <- rep(NA, 1)

h[1] <- sum(x) - 1 # zeroth moment constraint: normalization

# h[2] <- sum(f*x) - 2.5 # first moment constraint: mean

h

}
heq.jac <- function(x) { # matrix

j <- matrix(NA, 1, length(x))

j[1, ] <- c(1, 1, 1) # partial derivatives of the normalization constraint wrt the p's

# j[2, ] <- c(1,2,3) # values of f, ie partial derivatives of the mean wrt the p's

j

}
hin <- function(x) { # vector

h <- x # vector of probabilities must be nonnegative in all entries

h

}
hin.jac <- function(x) { # matrix

diag(length(x)) # partial derivatives of hin wrt the p's

}

Finally we can call the function auglag, where the first parameter is the initial vector from which to start
the numerical computation:

results<-auglag(runif(3,0,.3),entropy,entropy_gr,heq=heq,heq.jac=heq.jac,hin=hin,hin.jac=hin.jac)

## Error in auglag(runif(3, 0, 0.3), entropy, entropy gr, heq = heq, heq.jac = heq.jac, : could

not find function "auglag"
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