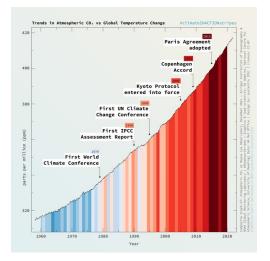
Overview

Sectoral Business Cycles, Price Stabilization, and Climate Change Mitigation

Stabilizing Unstable Economy-Ecology Interactions


Oriol Vallès Codina

Leeds University Business School, Department of Economics, Research Fellow JUST2CE Project For a Just Transition to the Circular Economy

NSSR Research Workshop on Climate Challenges December 2nd 2023

Overview		
●00		

Motivation: Do Climate Accords Drive Carbon Emissions?

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ 三臣 - のへで

Overview ○●○		
1 . 1		

Introduction

- In the face of the dual inflationary threats of de-globalization and climate change, policy-makers are currently embracing more activist policies of price stabilization such as strategic price controls (such as on European energy) or tax-subsidy schemes (such as the US Inflation Reduction Act).
- The microeconomic literature on the stability of competitive economies is re-purposed to develop a data-driven dynamic model of ecologically-extended multi-sector growth.
- Sector-oriented policies to accelerate the low-carbon transition while stabilizing prices are investigated.

Overview ○○●		

Main Findings

- A highly hierarchical economic structure of intermediate production is highly vulnerable to input cost shocks and climate disasters.
- 2 While price controls stabilize economic fluctuations, they fail to reduce environmental impact.

ション ふゆ く 山 マ チャット しょうくしゃ

3 Tax-subsidy mixes reduce environmental impact, while stabilizing prices at the same time.

Theory	
•00	

The Bielefeld Disequilibrium Approach

Cross-Dual Adjustment

- Walrasian Law of Excess Demand
 if demand d_i is above (below) supply x_i, price p_i rises (falls)
- Classical Law of Excess Profitability if price p_i above (below) cost_i, quantity x_i rises (falls)

Keynesian Dual Adjustment

- Oligopolistic Markup Pricing
 if price p_i above (below) cost_i, price p_i falls (rises)
- Demand-led Inventory Adjustment
 if demand d_i is above (below) supply x_i, quantity x_i rises (falls)

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

Theory	
000	

Out-of-Equilibrium Imbalances in Quantities and Prices

Supply-demand imbalance column-vector Δx is:

 $\Delta_{x} = \underbrace{Ax + gAx + c}_{\text{demand}} - \underbrace{x}_{\text{supply}} \equiv C(g) + c \tag{1}$

Unit profitability imbalance row-vector Δ_p is:

$$\Delta_{p} = \underbrace{pA + rpA + w}_{\text{unit cost}} - \underbrace{p}_{\text{unit revenue}} \equiv C(r) + w \qquad (2)$$

In equilibrium, supply equals demand:

$$\Delta_{x^*} = 0 \qquad \rightarrow \qquad x^* = [I - (1 + g)A]^{-1}c = C^{-1}(g)c \quad (3)$$

and profitability is uniform across sectors:

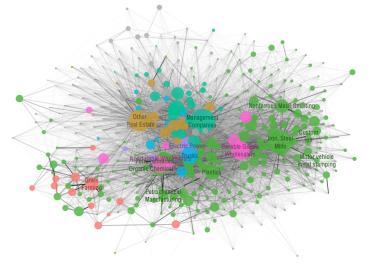
$$\Delta_{p^*} = 0 \qquad \to \qquad p^* = -w[I - (1+r)A]^{-1} = -C^{-1}(r)w \quad (4)$$

Theory	
000	

The Composite Dynamical System

$$\dot{x} = \underbrace{\delta_{xx}\Delta_{x}}_{\text{Keynesian}} - \underbrace{\delta_{xp}\Delta_{p}}_{\text{classical}}$$
(5)
$$\dot{p}^{T} = \underbrace{\delta_{px}\Delta_{x}}_{\text{Walrasian}} + \underbrace{\delta_{pp}\Delta_{p}}_{\text{Keynesian}}$$
(6)

which can be simplified as:

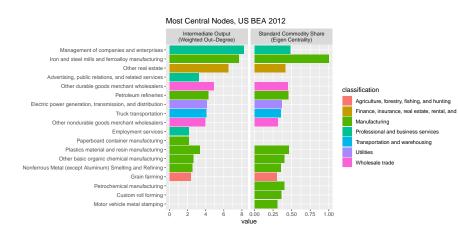

$$\begin{pmatrix} \dot{x} \\ \dot{p}^{T} \end{pmatrix} = \begin{pmatrix} \delta_{xx} & -\delta_{xp} \\ \delta_{px} & \delta_{pp} \end{pmatrix} \left\{ \begin{pmatrix} (1+g)A - I \\ [(1+r)A - I]^{T} \end{pmatrix} \begin{pmatrix} x \\ p^{T} \end{pmatrix} + \begin{pmatrix} c \\ w^{T} \end{pmatrix} \right\}$$
(7) with homogeneous solution $y(t) = e^{Qt}y(0)$ where $y = z - z^{*}$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Theory Empirics Simulations

The Complex Structure of Price-Quantity Interactions

Economic Networks are Highly Hierarchical

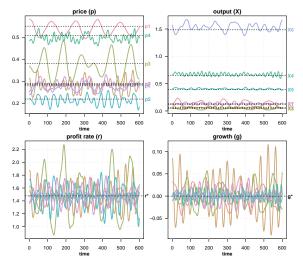


◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへ⊙

	Empirics	
	000000	

The Complex Structure of Price-Quantity Interactions

Most Central Industries


▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ ▲圖 - のへで

 Theory
 Empirics
 Simulations

 000
 00●0000
 000000

The Intensity of Price-Quantity Interactions

Synthetic Cross-Dual Example for 7-sector US economy

|湿 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ▲ 臣 = ∽ � � �

E

The Intensity of Price-Quantity Interactions

Synthetic Cross-Dual Example

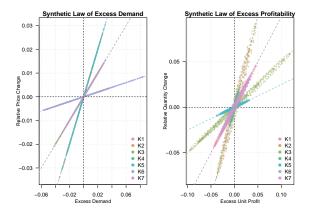
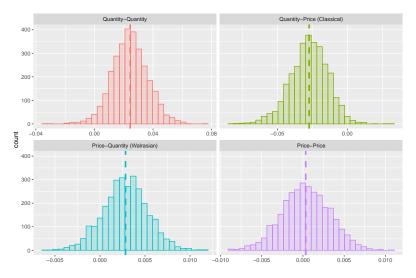


Figure: Linear slopes correspond to the adjustment parameters δ_p and δ_x . Regressions are of the simple form $y_t = \beta_k x_t + \varepsilon_t$ for sector k

	Empirics	
	000000	

The Intensity of Price-Quantity Interactions

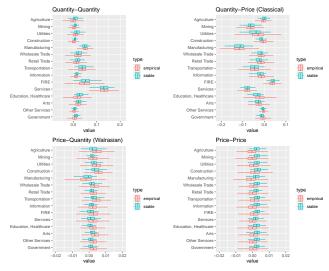
Empirical Imbalances: Composite Adjustments



| ◆ □ ▶ ◆ ■ ▶ ◆ ■ ◆ ● ◆ ● ◆ ● ◆ ● ◆ ● ◆ ● ◆

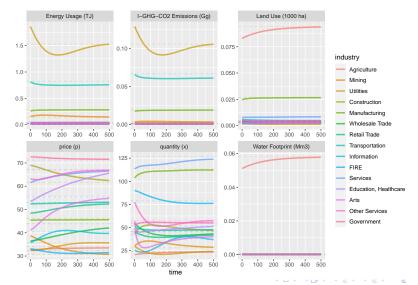
	Empirics	
	000000	

The Intensity of Price-Quantity Interactions


Posterior Distributions of the Fixed Effects

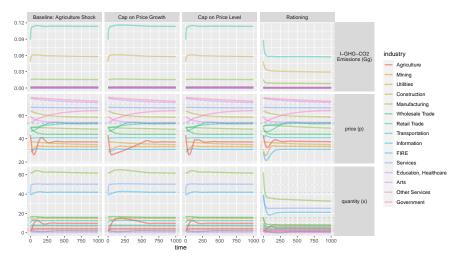
◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 三臣 - のへで

		Empirics ○○○○○●	
The Intensity of Price-0	Quantity Interactions		


Posterior Distributions of Industry-Specific Random Effects

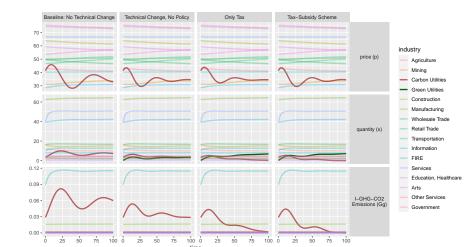
A (1) > A (1) > A 3

	Simulations •00000

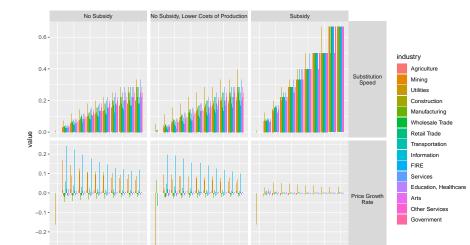

Ecologically-Extended Calibrated Simulations

590

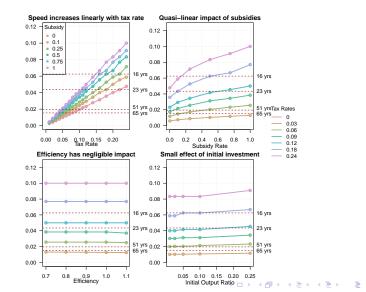
	Simulations
	00000


Price Controls Reduce Economic Volatility

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ シ۹ペ


	Simulations
	00000

Tax-Subsidy Mixes Accelerate Decarbonization, Stabilize Prices


	Simulations
	000000

Tax-Subsidy Mixes Accelerate Decarbonization, Stabilize Prices

	Simulations
	000000

Assessing the Time Scales of the Low-Carbon Transition

	Simulations 00000●

Thank you!

o.vallescodina@leeds.ac.uk